Yuhui Wang, Xuanyu Liu, Shilong Ma, Xuhong He, Chaiqiong Guo, Ziwei Liang, Yinchun Hu, Yan Wei, Xiaojie Lian, Di Huang
{"title":"Progress in cancer therapy with functionalized Fe3O4 nanomaterials","authors":"Yuhui Wang, Xuanyu Liu, Shilong Ma, Xuhong He, Chaiqiong Guo, Ziwei Liang, Yinchun Hu, Yan Wei, Xiaojie Lian, Di Huang","doi":"10.1007/s11706-023-0658-4","DOIUrl":null,"url":null,"abstract":"<div><p>Malignant neoplasms represent a significant global health threat. To address the need for accurate diagnosis and effective treatment, research is underway to develop therapeutic nanoplatforms. Iron oxide nanoparticles (NPs), specifically Fe<sub>3</sub>O<sub>4</sub> NPs have been extensively studied as potential therapeutic agents for cancer due to their unique properties including magnetic targeting, favorable biocompatibility, high magnetic response sensitivity, prolonged <i>in vivo</i> circulation time, stable performance, and high self-metabolism. Their ability to be integrated with magnetic hyperthermia, photodynamic therapy, and photothermal therapy has resulted in the widespread use of Fe<sub>3</sub>O<sub>4</sub> NPs in cancer diagnosis and treatment, making them a popular choice for such applications. Various methods can be employed to synthesize magnetic Fe<sub>3</sub>O<sub>4</sub> NPs, which can then be surface-modified with biocompatible materials or active targeting molecules. Multifunctional systems can be created by combining Fe<sub>3</sub>O<sub>4</sub> NPs with polymers. By combining various therapeutic approaches, more effective biomedical materials can be developed. This paper discusses the synthesis of Fe<sub>3</sub>O<sub>4</sub> NPs and the latest research advances in Fe<sub>3</sub>O<sub>4</sub>-based nanotherapeutic platforms, as well as their applications in the biomedical field.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0658-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Malignant neoplasms represent a significant global health threat. To address the need for accurate diagnosis and effective treatment, research is underway to develop therapeutic nanoplatforms. Iron oxide nanoparticles (NPs), specifically Fe3O4 NPs have been extensively studied as potential therapeutic agents for cancer due to their unique properties including magnetic targeting, favorable biocompatibility, high magnetic response sensitivity, prolonged in vivo circulation time, stable performance, and high self-metabolism. Their ability to be integrated with magnetic hyperthermia, photodynamic therapy, and photothermal therapy has resulted in the widespread use of Fe3O4 NPs in cancer diagnosis and treatment, making them a popular choice for such applications. Various methods can be employed to synthesize magnetic Fe3O4 NPs, which can then be surface-modified with biocompatible materials or active targeting molecules. Multifunctional systems can be created by combining Fe3O4 NPs with polymers. By combining various therapeutic approaches, more effective biomedical materials can be developed. This paper discusses the synthesis of Fe3O4 NPs and the latest research advances in Fe3O4-based nanotherapeutic platforms, as well as their applications in the biomedical field.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.