An Application of Transformed Distribution: Length of Stay in Hospitals

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-11-20 DOI:10.1285/I20705948V12N3P691
S. Harini, M. Subbiah, M. R. Srinivasan, M. Gallo
{"title":"An Application of Transformed Distribution: Length of Stay in Hospitals","authors":"S. Harini, M. Subbiah, M. R. Srinivasan, M. Gallo","doi":"10.1285/I20705948V12N3P691","DOIUrl":null,"url":null,"abstract":"Length of stay in hospitals are mostly characterized as asymmetric, right skewed and leptokurtic in nature. Earlier studies have considered parametric distributions like gamma, Pareto, lognormal for studying length of stay of patients in hospitals. However, in this study we have proposed transformed distributions to be the best choice for characterizing the length of stay. For this study, we have considered paediatric asthma dataset and identified that transformed Weibull-Pareto as the best fit. For a comparative purpose we have also provided the results of gamma, lognormal, and Pareto distribution. Maximum likelihood approach is considered to estimate the unknown parameters of the Transformed distribution followed by goodness of fit tests to examine the suitability of the fitted distributions. The results provide a direction for modelling the length of stay in hospitals due to different medical problems which require hospitalization.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"691-704"},"PeriodicalIF":0.6000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N3P691","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N3P691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Length of stay in hospitals are mostly characterized as asymmetric, right skewed and leptokurtic in nature. Earlier studies have considered parametric distributions like gamma, Pareto, lognormal for studying length of stay of patients in hospitals. However, in this study we have proposed transformed distributions to be the best choice for characterizing the length of stay. For this study, we have considered paediatric asthma dataset and identified that transformed Weibull-Pareto as the best fit. For a comparative purpose we have also provided the results of gamma, lognormal, and Pareto distribution. Maximum likelihood approach is considered to estimate the unknown parameters of the Transformed distribution followed by goodness of fit tests to examine the suitability of the fitted distributions. The results provide a direction for modelling the length of stay in hospitals due to different medical problems which require hospitalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转化分布在医院住院时间中的应用
住院时间主要表现为不对称、右倾和钩端性。早期的研究考虑了参数分布,如伽马,帕累托,对数正态分布来研究患者在医院的住院时间。然而,在这项研究中,我们提出转换分布是表征停留时间长短的最佳选择。在本研究中,我们考虑了儿童哮喘数据集,并确定转化Weibull-Pareto是最适合的。为了便于比较,我们还提供了伽玛分布、对数正态分布和帕累托分布的结果。采用最大似然法估计变换后分布的未知参数,然后采用拟合优度检验检验拟合分布的适宜性。研究结果为建立因不同医疗问题而需要住院治疗的住院时间模型提供了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1