Predicting Desirable Revisions of Evidence and Reasoning in Argumentative Writing

T. Afrin, D. Litman
{"title":"Predicting Desirable Revisions of Evidence and Reasoning in Argumentative Writing","authors":"T. Afrin, D. Litman","doi":"10.48550/arXiv.2302.05039","DOIUrl":null,"url":null,"abstract":"We develop models to classify desirable evidence and desirable reasoning revisions in student argumentative writing. We explore two ways to improve classifier performance – using the essay context of the revision, and using the feedback students received before the revision. We perform both intrinsic and extrinsic evaluation for each of our models and report a qualitative analysis. Our results show that while a model using feedback information improves over a baseline model, models utilizing context - either alone or with feedback - are the most successful in identifying desirable revisions.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"2505-2516"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We develop models to classify desirable evidence and desirable reasoning revisions in student argumentative writing. We explore two ways to improve classifier performance – using the essay context of the revision, and using the feedback students received before the revision. We perform both intrinsic and extrinsic evaluation for each of our models and report a qualitative analysis. Our results show that while a model using feedback information improves over a baseline model, models utilizing context - either alone or with feedback - are the most successful in identifying desirable revisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
议论文写作中证据与推理的预期修正
我们开发了模型来对学生议论文中的合意证据和合意推理修正进行分类。我们探索了两种提高分类器性能的方法——使用复习的文章上下文和使用学生在复习前收到的反馈。我们对每个模型进行内在和外在评估,并报告定性分析。我们的结果表明,虽然使用反馈信息的模型比基线模型有所改进,但使用上下文的模型——无论是单独的还是有反馈的——在确定理想的修订方面是最成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning Darkness and Death in the U.S.: Walking Distances Across the Nation by Time of Day and Time of Year Activity Reduction as Resilience Indicator: Evidence with Filomena Data The Lifestyle and Mobility Connection of Community Supported Agriculture (CSA) Users Transit Fleet Electrification Barriers, Resolutions and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1