{"title":"Sistem Klasifikasi Musik Gamelan Angklung Bali Terhadap Suasana Hati Menggunakan Algoritma K-Nearest Neighbor Berbasis Algoritma Genetika","authors":"Tria Hikmah Fratiwi, M. Sudarma, N. Pramaita","doi":"10.24843/mite.2021.v20i02.p10","DOIUrl":null,"url":null,"abstract":"Musik instrumen gamelan angklung Bali lewat gelombang bunyi yang dihasilkannya mampu menginterferensi gelombang pikiran manusia untuk menurunkan frekuensi gelombang yang dipancarkan oleh otak. Tujuannya untuk mempengaruhi kondisi psikologi yang berkaitan dengan suasana hati agar mengarah pada tingkat stress positif dengan tingkat energi rendah maupun tinggi. Musik dengan tingkat stress positif dan tingkat energi rendah masuk ke dalam kategori suasana hati tenang atau contentment, jika tingkat stress positif dan tingkat energi tinggi masuk ke dalam kategori suasana hati senang atau exuberance. MIR (Music Information Retrieval) adalah bagian dari Data Mining yang menggali informasi mengenai data musik, salah satunya yaitu klasifikasi suasana hati yang diinterpretasikan oleh potongan data musik. Penelitian ini merancang dan membangun sistem klasifikasi untuk mendeteksi suasana hati musik instrumen gamelan angklung Bali menggunakan algoritma K-NN dan K-NN berbasis Algoritma Genetika. K-NN dapat mengatasi masalah klasifikasi dengan baik, namun dibalik keunggulannya, pengaturan nilai k yang sangat sensitif menjadi sebuah kelemahan. Menerapkan operasi genetika oleh Algoritma Genetika pada sistem klasifikasi K-NN berhasil mengoptimasi penentuan nilai k optimal, serta memperbaiki hasil akurasi klasifikasi. Berdasarkan dataset training dan dataset testing yang sama, K-NN memberikan persentase akurasi tertinggi sebesar 81,08% (k=6), sedangkan K-NN berbasis Algoritma Genetika memberikan persentase akurasi tertinggi sebesar 89,19% (k=4).","PeriodicalId":53323,"journal":{"name":"Majalah Ilmiah Teknologi Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Teknologi Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mite.2021.v20i02.p10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Musik instrumen gamelan angklung Bali lewat gelombang bunyi yang dihasilkannya mampu menginterferensi gelombang pikiran manusia untuk menurunkan frekuensi gelombang yang dipancarkan oleh otak. Tujuannya untuk mempengaruhi kondisi psikologi yang berkaitan dengan suasana hati agar mengarah pada tingkat stress positif dengan tingkat energi rendah maupun tinggi. Musik dengan tingkat stress positif dan tingkat energi rendah masuk ke dalam kategori suasana hati tenang atau contentment, jika tingkat stress positif dan tingkat energi tinggi masuk ke dalam kategori suasana hati senang atau exuberance. MIR (Music Information Retrieval) adalah bagian dari Data Mining yang menggali informasi mengenai data musik, salah satunya yaitu klasifikasi suasana hati yang diinterpretasikan oleh potongan data musik. Penelitian ini merancang dan membangun sistem klasifikasi untuk mendeteksi suasana hati musik instrumen gamelan angklung Bali menggunakan algoritma K-NN dan K-NN berbasis Algoritma Genetika. K-NN dapat mengatasi masalah klasifikasi dengan baik, namun dibalik keunggulannya, pengaturan nilai k yang sangat sensitif menjadi sebuah kelemahan. Menerapkan operasi genetika oleh Algoritma Genetika pada sistem klasifikasi K-NN berhasil mengoptimasi penentuan nilai k optimal, serta memperbaiki hasil akurasi klasifikasi. Berdasarkan dataset training dan dataset testing yang sama, K-NN memberikan persentase akurasi tertinggi sebesar 81,08% (k=6), sedangkan K-NN berbasis Algoritma Genetika memberikan persentase akurasi tertinggi sebesar 89,19% (k=4).