{"title":"Membrane fouling and sludge characteristics in submerged membrane bioreactor under low temperature","authors":"Yuan Yuan, Jianqiao Zhang","doi":"10.12989/MWT.2019.10.5.331","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the membrane fouling and sludge characteristics in a pilot-scale submerged membrane bioreactor (MBR) operated under low temperature (7 degree Celcius) To elucidate the mechanisms of membrane fouling at low temperature, we studied the correlation between MBR performances and physicochemical properties of sludge including extracellular polymeric substance (EPS), relative hydrophobicity (RH) and floc size during long-term operation. The MBR was shown able to remove chemical oxygen demand (COD) stably and efficiently (>90 %) in the case of overgrowth of filamentous bacteria (bulking sludge) at low temperature. On the other hand, the occurrence of filamentous bulking greatly accelerated membrane fouling, as indicated by membrane filtration period of 14 days for filamentous bulking at 7 degree Celcius, in comparison with that of 27 days for non-bulking sludge at 24 degree Celcius. The overgrowth of filamentous bacteria resulting from low-temperature condition led to an increased release of EPS, higher RH, smaller floc size and lower fractal dimension of sludge. These factors accelerated the formation of compact cake layer on membrane surface in association with performance diminution in terms of increase in transmembrane pressure (TMP) of the membrane and thus the decrease in membrane permeability.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"10 1","pages":"331-338"},"PeriodicalIF":0.8000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2019.10.5.331","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This study aimed to investigate the membrane fouling and sludge characteristics in a pilot-scale submerged membrane bioreactor (MBR) operated under low temperature (7 degree Celcius) To elucidate the mechanisms of membrane fouling at low temperature, we studied the correlation between MBR performances and physicochemical properties of sludge including extracellular polymeric substance (EPS), relative hydrophobicity (RH) and floc size during long-term operation. The MBR was shown able to remove chemical oxygen demand (COD) stably and efficiently (>90 %) in the case of overgrowth of filamentous bacteria (bulking sludge) at low temperature. On the other hand, the occurrence of filamentous bulking greatly accelerated membrane fouling, as indicated by membrane filtration period of 14 days for filamentous bulking at 7 degree Celcius, in comparison with that of 27 days for non-bulking sludge at 24 degree Celcius. The overgrowth of filamentous bacteria resulting from low-temperature condition led to an increased release of EPS, higher RH, smaller floc size and lower fractal dimension of sludge. These factors accelerated the formation of compact cake layer on membrane surface in association with performance diminution in terms of increase in transmembrane pressure (TMP) of the membrane and thus the decrease in membrane permeability.
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.