{"title":"Diverse effects of pulsed electrical stimulation on cells - with a focus on chondrocytes and cartilage regeneration.","authors":"T. Ning, K. Zhang, Heng Bc, Z. Ge","doi":"10.22203/eCM.v038a07","DOIUrl":null,"url":null,"abstract":"Biological effects of pulsed electrical stimulation (PES) on cells and tissues have been intensively studied with the aim of advancing their biomedical applications. These effects vary significantly depending on PES parameters, cell and tissue types, which can be attributed to the diverse variety of signaling pathways, ion channels, and epigenetic mechanisms involved. The development of new technology platforms, such as nanosecond pulsed electric fields (nsPEFs) with finely tuned parameters, have added further complexity. The present review systematically examines current research progress in various aspects of PES, from physical models to biological effects on cells and tissues, including voltage-sensing domains of voltage-gated channels, pore formation, intracellular components/organelles, and signaling pathways. Emphasis is placed on the complexity of PES parameters and inconsistency of induced biological effects, with the aim of exploring the underlying physical and cellular mechanisms of the physiological effects of electrical stimulation on cells. With chondrogenic differentiation of stem cells and cartilage regeneration as examples, the underlying mechanisms involved were reviewed and analyzed, hoping to move forward towards potential biomedical applications. Hopefully, the present review will inspire more interest in the wider clinical applications of PES and lay the basis for further comprehensive studies in this field.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"79-93"},"PeriodicalIF":3.2000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a07","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v038a07","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 15
Abstract
Biological effects of pulsed electrical stimulation (PES) on cells and tissues have been intensively studied with the aim of advancing their biomedical applications. These effects vary significantly depending on PES parameters, cell and tissue types, which can be attributed to the diverse variety of signaling pathways, ion channels, and epigenetic mechanisms involved. The development of new technology platforms, such as nanosecond pulsed electric fields (nsPEFs) with finely tuned parameters, have added further complexity. The present review systematically examines current research progress in various aspects of PES, from physical models to biological effects on cells and tissues, including voltage-sensing domains of voltage-gated channels, pore formation, intracellular components/organelles, and signaling pathways. Emphasis is placed on the complexity of PES parameters and inconsistency of induced biological effects, with the aim of exploring the underlying physical and cellular mechanisms of the physiological effects of electrical stimulation on cells. With chondrogenic differentiation of stem cells and cartilage regeneration as examples, the underlying mechanisms involved were reviewed and analyzed, hoping to move forward towards potential biomedical applications. Hopefully, the present review will inspire more interest in the wider clinical applications of PES and lay the basis for further comprehensive studies in this field.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.