Calculating access to parks and other polygonal resources: A description of open-source methodologies

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2023-07-16 DOI:10.1016/j.sste.2023.100606
Keith R. Spangler , Paige Brochu , Amruta Nori-Sarma , Dennis Milechin , Michael Rickles , Brandeus Davis , Kimberly A. Dukes , Kevin J. Lane
{"title":"Calculating access to parks and other polygonal resources: A description of open-source methodologies","authors":"Keith R. Spangler ,&nbsp;Paige Brochu ,&nbsp;Amruta Nori-Sarma ,&nbsp;Dennis Milechin ,&nbsp;Michael Rickles ,&nbsp;Brandeus Davis ,&nbsp;Kimberly A. Dukes ,&nbsp;Kevin J. Lane","doi":"10.1016/j.sste.2023.100606","DOIUrl":null,"url":null,"abstract":"<div><p>Public health studies routinely use simplistic methods to calculate proximity-based “access” to greenspace, such as by measuring distances to the geographic centroids of parks or, less frequently, to the perimeter of the park area. Although computationally efficient, these approaches oversimplify exposure measurement because parks often have specific entrance points. In this tutorial paper, we describe how researchers can instead calculate more-accurate access measures using freely available open-source methods. Specifically, we demonstrate processes for calculating “service areas” representing street-network-based buffers of access to parks within set distances and mode of transportation (e.g., 1-km walk or 20-minute drive) using OpenRouteService and QGIS software. We also introduce an advanced method involving the identification of trailheads or parking lots with OpenStreetMap data and show how large parks particularly benefit from this approach. These methods can be used globally and are applicable to analyses of a wide range of studies investigating proximity access to resources.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"47 ","pages":"Article 100606"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584523000436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Public health studies routinely use simplistic methods to calculate proximity-based “access” to greenspace, such as by measuring distances to the geographic centroids of parks or, less frequently, to the perimeter of the park area. Although computationally efficient, these approaches oversimplify exposure measurement because parks often have specific entrance points. In this tutorial paper, we describe how researchers can instead calculate more-accurate access measures using freely available open-source methods. Specifically, we demonstrate processes for calculating “service areas” representing street-network-based buffers of access to parks within set distances and mode of transportation (e.g., 1-km walk or 20-minute drive) using OpenRouteService and QGIS software. We also introduce an advanced method involving the identification of trailheads or parking lots with OpenStreetMap data and show how large parks particularly benefit from this approach. These methods can be used globally and are applicable to analyses of a wide range of studies investigating proximity access to resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算公园和其他多边形资源的访问:对开源方法的描述
公共卫生研究通常使用简单的方法来计算基于邻近程度的“进入”绿色空间的途径,例如测量到公园地理质心的距离,或者较少使用到公园区域周长的距离。虽然计算效率高,但这些方法过于简化了暴露测量,因为公园通常有特定的入口点。在这篇教程中,我们描述了研究人员如何使用免费的开源方法来计算更准确的访问度量。具体来说,我们演示了使用OpenRouteService和QGIS软件计算“服务区域”的过程,这些“服务区域”代表了在设定距离和交通方式(例如,1公里步行或20分钟车程)内基于街道网络的公园缓冲区。我们还介绍了一种先进的方法,包括使用OpenStreetMap数据识别小径起点或停车场,并展示了大型公园如何从这种方法中受益。这些方法可以在全球范围内使用,并适用于调查资源接近性的广泛研究的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1