{"title":"Flood forecasting scheme of Nanshui reservoir based on Liuxihe model","authors":"Feng Zhou , Yangbo Chen , Liyang Wang , Sheng Wu , Guangzhe Shao","doi":"10.1016/j.tcrr.2021.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>China experiences one of the most frequent flood disasters in the world. Establishing accurate and reliable flood prediction program is the key to deal with flood disasters. Nanshui Reservoir Basin, in southern China, belongs to subtropical monsoon climate, with more rain in spring, concentrated rainstorm in summer and typhoon storm in autumn. Floods at dam site are mostly small and medium-sized floods with steep rise and slow fall as typical mountain flood. In order to explore the applicability of Liuxihe model in flood prediction of Nanshui Reservoir, this paper builds up Liuxihe model for Nanshui Reservoir based on DEM, land use and soil type data, and selects a typical flood event to optimize the parameters using particle swarm optimization (PSO) algorithm and verifies the accuracy of the model by simulating the other floods. Liuxihe model established in this paper indicates a satisfactory performance for flood prediction for Nanshui Reservoir, which can meet the accuracy requirement of flood prediction. Finally, the effects of different river grading and PSO algorithm on flood prediction are discussed. The results show that the PSO algorithm can obviously improve the accuracy of the Liuxihe model for flood forecast in Nanshui Reservoir. The simulation based on four-level channel grading has better results than that based on three-level channel, which indicates increased peak flood value, delayed peak time and closer simulation to the measured value.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"10 2","pages":"Pages 106-115"},"PeriodicalIF":2.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcrr.2021.06.002","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603221000151","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
China experiences one of the most frequent flood disasters in the world. Establishing accurate and reliable flood prediction program is the key to deal with flood disasters. Nanshui Reservoir Basin, in southern China, belongs to subtropical monsoon climate, with more rain in spring, concentrated rainstorm in summer and typhoon storm in autumn. Floods at dam site are mostly small and medium-sized floods with steep rise and slow fall as typical mountain flood. In order to explore the applicability of Liuxihe model in flood prediction of Nanshui Reservoir, this paper builds up Liuxihe model for Nanshui Reservoir based on DEM, land use and soil type data, and selects a typical flood event to optimize the parameters using particle swarm optimization (PSO) algorithm and verifies the accuracy of the model by simulating the other floods. Liuxihe model established in this paper indicates a satisfactory performance for flood prediction for Nanshui Reservoir, which can meet the accuracy requirement of flood prediction. Finally, the effects of different river grading and PSO algorithm on flood prediction are discussed. The results show that the PSO algorithm can obviously improve the accuracy of the Liuxihe model for flood forecast in Nanshui Reservoir. The simulation based on four-level channel grading has better results than that based on three-level channel, which indicates increased peak flood value, delayed peak time and closer simulation to the measured value.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones