Meta-Analytic Analysis of Invariance Across Samples: Introducing a Method That Does Not Require Raw Data

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2020-11-09 DOI:10.1080/01973533.2020.1843461
A. af Wåhlberg, G. Madison, U. Aasa, Jeong Jin Yu
{"title":"Meta-Analytic Analysis of Invariance Across Samples: Introducing a Method That Does Not Require Raw Data","authors":"A. af Wåhlberg, G. Madison, U. Aasa, Jeong Jin Yu","doi":"10.1080/01973533.2020.1843461","DOIUrl":null,"url":null,"abstract":"Abstract Invariance of surveys across different groups means that the respondents interpret the items in the same way, as reflected in similar factor loadings, for example. Invariance can be assessed using various statistical procedures, such as Multi-Group Confirmatory Factor Analysis. However, these analyses require access to raw data. Here, we introduce a meta-analytic method that requires only the factor correlation matrices of samples as input. It compares the structures of intercorrelations of factors by correlating these values across two samples, yielding a value of overall similarity for how the factors intercorrelate in different samples. This method was tested in three different ways. We conclude that the method yields useful results and can assess invariance when raw data are not available.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01973533.2020.1843461","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/01973533.2020.1843461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Invariance of surveys across different groups means that the respondents interpret the items in the same way, as reflected in similar factor loadings, for example. Invariance can be assessed using various statistical procedures, such as Multi-Group Confirmatory Factor Analysis. However, these analyses require access to raw data. Here, we introduce a meta-analytic method that requires only the factor correlation matrices of samples as input. It compares the structures of intercorrelations of factors by correlating these values across two samples, yielding a value of overall similarity for how the factors intercorrelate in different samples. This method was tested in three different ways. We conclude that the method yields useful results and can assess invariance when raw data are not available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨样本不变性的元分析:引入一种不需要原始数据的方法
不同群体间调查的不变性意味着受访者以相同的方式解释项目,例如,反映在相似的因素负荷中。不变性可以使用各种统计程序进行评估,例如多组验证性因子分析。然而,这些分析需要访问原始数据。在这里,我们引入一种元分析方法,只需要样本的因子相关矩阵作为输入。它通过在两个样本中关联这些值来比较因素相互关系的结构,从而得出不同样本中因素相互关系的总体相似性值。这个方法用三种不同的方式进行了测试。我们得出结论,该方法产生了有用的结果,并且可以在没有原始数据时评估不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1