{"title":"Investigation of a minority carrier trap in a NiO/β-Ga2O3 p–n heterojunction via deep-level transient spectroscopy","authors":"Haolan Qu, Jiaxiang Chen, Yu Zhang, Jin-chi Sui, Ruohan Zhang, Junmin Zhou, Xing Lu, Xinbo Zou","doi":"10.1088/1361-6641/acf608","DOIUrl":null,"url":null,"abstract":"The properties of a minority carrier (hole) trap in β-Ga2O3 have been explicitly investigated using a NiO/β-Ga2O3 p–n heterojunction. Via deep-level transient spectroscopy, the activation energy for emission (E emi) and the hole capture cross section (σp ) were derived to be 0.10 eV and 2.48 × 10−15 cm2, respectively. Temperature-enhanced capture and emission kinetics were revealed by the decrease in the capture time constant (τc ) and emission time constant (τe ). Moreover, it was determined that the emission process of the minority carrier trap is independent of the electric field. Taking carrier recombination into account, a corrected trap concentration (N Ta) of 2.73 × 1015 cm−3 was extracted, together with an electron capture cross section (σn ) of 1.42 × 10−18 cm2. This study provides a foundation for the comprehension of trap properties in β-Ga2O3, which is crucial for overcoming self-trapped hole effects when obtaining p-type β-Ga2O3 materials and performance enhancement of β-Ga2O3-based power devices.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/acf608","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The properties of a minority carrier (hole) trap in β-Ga2O3 have been explicitly investigated using a NiO/β-Ga2O3 p–n heterojunction. Via deep-level transient spectroscopy, the activation energy for emission (E emi) and the hole capture cross section (σp ) were derived to be 0.10 eV and 2.48 × 10−15 cm2, respectively. Temperature-enhanced capture and emission kinetics were revealed by the decrease in the capture time constant (τc ) and emission time constant (τe ). Moreover, it was determined that the emission process of the minority carrier trap is independent of the electric field. Taking carrier recombination into account, a corrected trap concentration (N Ta) of 2.73 × 1015 cm−3 was extracted, together with an electron capture cross section (σn ) of 1.42 × 10−18 cm2. This study provides a foundation for the comprehension of trap properties in β-Ga2O3, which is crucial for overcoming self-trapped hole effects when obtaining p-type β-Ga2O3 materials and performance enhancement of β-Ga2O3-based power devices.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.