{"title":"Mechanical and thermal expansion behaviour of TiC-reinforced CoCrFeMnNi high entropy alloy prepared by mechanical alloying and spark plasma sintering","authors":"C. Nagarjuna, S. Dewangan, Kwan Lee, B. Ahn","doi":"10.1080/00325899.2023.2219145","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, TiC-reinforced CoCrFeMnNi high-entropy alloy (HEA) composites were prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The phase composition, microstructure, mechanical and thermal expansion behaviour of composite HEAs were investigated. The results reveal that the addition of TiC has no effect on the crystal structure, however, the microstructure and mechanical properties show a strong dependency on the TiC content. Compared to the original HEA, the composite HEA shows decreased grain size, resulting in TiC nanoparticles (NPs) retarding grain growth by pinning the grain boundaries. With increasing TiC content from 0 to 4 wt-%, significant increases in the hardness from 410 to 480 HV and compressive yield strength from 680 to 1100 MPa, which is mainly due to the grain boundary and dispersion strengthening effects. Moreover, the thermal expansion curves show linear increments up to 800°C and decrease with increasing TiC content.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2219145","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT In this study, TiC-reinforced CoCrFeMnNi high-entropy alloy (HEA) composites were prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The phase composition, microstructure, mechanical and thermal expansion behaviour of composite HEAs were investigated. The results reveal that the addition of TiC has no effect on the crystal structure, however, the microstructure and mechanical properties show a strong dependency on the TiC content. Compared to the original HEA, the composite HEA shows decreased grain size, resulting in TiC nanoparticles (NPs) retarding grain growth by pinning the grain boundaries. With increasing TiC content from 0 to 4 wt-%, significant increases in the hardness from 410 to 480 HV and compressive yield strength from 680 to 1100 MPa, which is mainly due to the grain boundary and dispersion strengthening effects. Moreover, the thermal expansion curves show linear increments up to 800°C and decrease with increasing TiC content.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.