T. Zsom, Petra Polgári, L. Nguyen, G. Hitka, V. Zsom-Muha
{"title":"Quality maintenance of broccoli by the use of 1-MCP treatments","authors":"T. Zsom, Petra Polgári, L. Nguyen, G. Hitka, V. Zsom-Muha","doi":"10.1556/446.2020.10010","DOIUrl":null,"url":null,"abstract":"Broccoli's high perishability and its sensitivity to negative quality changes (i.e., mass loss, ethylene induced degreening, abscission of leaves, and florets) generates quality problems during postharvest. Freshly harvested samples were stored at 5 and 21 °C after separately treated for 24 h with 625 ppb 1-methyl-cyclopropene (1-MCP), 24 h with 2 ppm ethylene and 1-MCP followed by ethylene. Quality maintenance effectivity of 1-MCP was investigated during cold and room storage by non-destructive optical methods (chlorophyll fluorescence and DA-index®) and by the evaluation of the visual physiological symptoms. The highly positive effects of 1-MCP treatment combined with cold storage were obviously proven on quality maintenance providing better retention of initial quality related to the initial mature green stage as chlorophyll content related DA-index®; Fm, Fv, Fv/Fm, and Fm/F0 chlorophyll fluorescence values. From the practical point of view, the rapid, and easy-to-use Sintéleia FRM01-F Vis/NIR DA-meter® could be applied relatively easy for the quality measurement of broccoli. The reproducibility of quality determination could be increased by the enhanced number of measuring points or using computer aided imaging methods (i.e., chlorophyll fluorescence imaging, machine vision system) providing global and more reliable information about quality changes.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2020.10010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Broccoli's high perishability and its sensitivity to negative quality changes (i.e., mass loss, ethylene induced degreening, abscission of leaves, and florets) generates quality problems during postharvest. Freshly harvested samples were stored at 5 and 21 °C after separately treated for 24 h with 625 ppb 1-methyl-cyclopropene (1-MCP), 24 h with 2 ppm ethylene and 1-MCP followed by ethylene. Quality maintenance effectivity of 1-MCP was investigated during cold and room storage by non-destructive optical methods (chlorophyll fluorescence and DA-index®) and by the evaluation of the visual physiological symptoms. The highly positive effects of 1-MCP treatment combined with cold storage were obviously proven on quality maintenance providing better retention of initial quality related to the initial mature green stage as chlorophyll content related DA-index®; Fm, Fv, Fv/Fm, and Fm/F0 chlorophyll fluorescence values. From the practical point of view, the rapid, and easy-to-use Sintéleia FRM01-F Vis/NIR DA-meter® could be applied relatively easy for the quality measurement of broccoli. The reproducibility of quality determination could be increased by the enhanced number of measuring points or using computer aided imaging methods (i.e., chlorophyll fluorescence imaging, machine vision system) providing global and more reliable information about quality changes.
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.