Analysis and Optimization of Organic Tandem Solar Cells by Full Opto-Electronic Simulation

U. Aeberhard, A. Schiller, Y. Masson, Simon Zeder, B. Blülle, B. Ruhstaller
{"title":"Analysis and Optimization of Organic Tandem Solar Cells by Full Opto-Electronic Simulation","authors":"U. Aeberhard, A. Schiller, Y. Masson, Simon Zeder, B. Blülle, B. Ruhstaller","doi":"10.3389/fphot.2022.891565","DOIUrl":null,"url":null,"abstract":"This paper reports on the analysis and optimization of high-efficiency organic tandem solar cells via full opto-electronic device simulation on continuum level and using a hopping model for the explicit description of the charge recombination junction. Inclusion of the electrical sub-cell interconnection allows for a rigorous assessment of the impact of the internal charge distribution and associated built-in fields as well as quasi-Fermi level profiles on the measured device characteristics. It enables the direct evaluation of the external quantum efficiency in a simulation that follows closely the measurement protocol, and sheds light on complications related to the dependence of the band profile on the illumination conditions. The study also points at fingerprints of insufficient junction quality in the electrical characteristics of the tandem device. After studying the impact of key electrical parameters such as, carrier mobility, lifetime and interface hopping rate, onto the device characteristics, the latter are optimized not only optically, but also electronically, adding in both cases an increasing number of layers to the parameters of the global optimization procedure. An improvement of 2% absolute power conversion efficiency by using the full opto-electronic optimization as compared to optical optimization only is found.","PeriodicalId":73099,"journal":{"name":"Frontiers in photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphot.2022.891565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper reports on the analysis and optimization of high-efficiency organic tandem solar cells via full opto-electronic device simulation on continuum level and using a hopping model for the explicit description of the charge recombination junction. Inclusion of the electrical sub-cell interconnection allows for a rigorous assessment of the impact of the internal charge distribution and associated built-in fields as well as quasi-Fermi level profiles on the measured device characteristics. It enables the direct evaluation of the external quantum efficiency in a simulation that follows closely the measurement protocol, and sheds light on complications related to the dependence of the band profile on the illumination conditions. The study also points at fingerprints of insufficient junction quality in the electrical characteristics of the tandem device. After studying the impact of key electrical parameters such as, carrier mobility, lifetime and interface hopping rate, onto the device characteristics, the latter are optimized not only optically, but also electronically, adding in both cases an increasing number of layers to the parameters of the global optimization procedure. An improvement of 2% absolute power conversion efficiency by using the full opto-electronic optimization as compared to optical optimization only is found.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机串联太阳能电池的全光电仿真分析与优化
本文采用连续能级全光电器件仿真,采用跳变模型对电荷复合结进行了显式描述,对高效有机串联太阳能电池进行了分析和优化。包含电子电池互连允许对内部电荷分布和相关内置场以及准费米能级剖面对测量器件特性的影响进行严格评估。它能够在密切遵循测量协议的模拟中直接评估外部量子效率,并揭示了与波段轮廓对照明条件的依赖性相关的复杂性。该研究还指出了串联装置电气特性中结质量不足的指纹。在研究了载流子迁移率、寿命和接口跳频等关键电学参数对器件特性的影响后,对器件特性不仅进行了光学优化,而且还进行了电子优化,在全局优化过程中增加了越来越多的层数。与光优化相比,采用全光电优化可使绝对功率转换效率提高2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Association of circadian dysregulation with retinal degeneration and Alzheimer’s disease: a special focus on Muller glial cells Days to re-entrainment following the spring and autumn changes in local clock time: beyond simple heuristics High-resolution imaging for in-situ non-destructive testing by quantitative lensless digital holography Broadband directional filter in multilayer liquid crystal polymer films at W-band Dual-modal photoacoustic and ultrasound imaging: from preclinical to clinical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1