{"title":"Micro-damage analysis and numerical simulation of composite solid propellant based on in situ tensile test","authors":"Yongqiang Li, Gaochun Li","doi":"10.1515/secm-2022-0196","DOIUrl":null,"url":null,"abstract":"Abstract In order to quantitatively analyze the mesoscopic damage process of hydroxyl-terminated polybutadiene composite solid propellant under external load, periodic boundary conditions were applied to the representative volume element model based on sample composition and morphology, the mixed matrix containing aluminum powder was homogenized, and the hyperelastic matrix damage and bilinear/exponential particle–matrix interface cohesive model with initial damage were compiled through the secondary development of Abaqus. At the same time, a data interaction platform was constructed by means of Python and MATLAB, matrix and cohesion parameters were inverted according to the optimization algorithm and experimental data, and the whole process of propellant damage and fracture was simulated from the mesoscopic perspective. The results show that combining the adaptive particle swarm optimization algorithm and the Hooke–Jeeves algorithm can achieve the global optimal parameter inversion in 102 calculations, compared with the single local search algorithm, which can cut about 11% of the objective function values. Considering the matrix damage and the exponential cohesion model with initial damage, the optimal objective function value is 0.01635, which can more accurately simulate the propellant damage and fracture process compared with 0.02136 of a bilinear cohesion model.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0196","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In order to quantitatively analyze the mesoscopic damage process of hydroxyl-terminated polybutadiene composite solid propellant under external load, periodic boundary conditions were applied to the representative volume element model based on sample composition and morphology, the mixed matrix containing aluminum powder was homogenized, and the hyperelastic matrix damage and bilinear/exponential particle–matrix interface cohesive model with initial damage were compiled through the secondary development of Abaqus. At the same time, a data interaction platform was constructed by means of Python and MATLAB, matrix and cohesion parameters were inverted according to the optimization algorithm and experimental data, and the whole process of propellant damage and fracture was simulated from the mesoscopic perspective. The results show that combining the adaptive particle swarm optimization algorithm and the Hooke–Jeeves algorithm can achieve the global optimal parameter inversion in 102 calculations, compared with the single local search algorithm, which can cut about 11% of the objective function values. Considering the matrix damage and the exponential cohesion model with initial damage, the optimal objective function value is 0.01635, which can more accurately simulate the propellant damage and fracture process compared with 0.02136 of a bilinear cohesion model.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.