Performance evaluation of a novel synchronously interdigitated/winded lithium-ion battery configuration enabled by 3D printing through numerical simulations

IF 7 3区 材料科学 Q1 ENERGY & FUELS Journal of Physics-Energy Pub Date : 2023-07-01 DOI:10.1088/2515-7655/acdf1d
Yide Li, Jie Li, Zhiyuan Liu, Zhangwei Chen, Changyong Liu
{"title":"Performance evaluation of a novel synchronously interdigitated/winded lithium-ion battery configuration enabled by 3D printing through numerical simulations","authors":"Yide Li, Jie Li, Zhiyuan Liu, Zhangwei Chen, Changyong Liu","doi":"10.1088/2515-7655/acdf1d","DOIUrl":null,"url":null,"abstract":"Thick electrodes with higher energy density are highly desirable for lithium-ion batteries (LIBs). However, the sluggish transport of Li-ions in thick electrodes is a critical challenge. In this study, a novel synchronously interdigitated/winded battery configuration enabled by 3D printing is proposed. The cathode, separator, and anode are synchronously interdigitated in the core and synchronously winded in the outer-rings to form an integrated full battery. With this novel battery configuration, Li-ions can transport between neighboring cathode and anode, thereby significantly reduce the transport distance of Li-ions, and improve the electrochemical reaction kinetics. To evaluate the electrochemical performance of this battery configuration, this study investigates the effects of various parameters including the electronic conductivity, electrode porosity, electrode line width, separator thickness, and number of winded outer-rings on the electrochemical performance through numerical simulations. Results showed that electronic conductivity is the most crucial factor in determining the electrochemical performance. In combination with multi-material 3D printing, the battery configuration proposed in this study may be utilized to build LIBs with higher energy density.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/acdf1d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Thick electrodes with higher energy density are highly desirable for lithium-ion batteries (LIBs). However, the sluggish transport of Li-ions in thick electrodes is a critical challenge. In this study, a novel synchronously interdigitated/winded battery configuration enabled by 3D printing is proposed. The cathode, separator, and anode are synchronously interdigitated in the core and synchronously winded in the outer-rings to form an integrated full battery. With this novel battery configuration, Li-ions can transport between neighboring cathode and anode, thereby significantly reduce the transport distance of Li-ions, and improve the electrochemical reaction kinetics. To evaluate the electrochemical performance of this battery configuration, this study investigates the effects of various parameters including the electronic conductivity, electrode porosity, electrode line width, separator thickness, and number of winded outer-rings on the electrochemical performance through numerical simulations. Results showed that electronic conductivity is the most crucial factor in determining the electrochemical performance. In combination with multi-material 3D printing, the battery configuration proposed in this study may be utilized to build LIBs with higher energy density.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数值模拟对3D打印实现的新型同步叉指/卷绕锂离子电池配置的性能评估
具有较高能量密度的厚电极对于锂离子电池(LIBs)是非常需要的。然而,锂离子在厚电极中缓慢的传输是一个关键的挑战。在这项研究中,提出了一种通过3D打印实现的新型同步叉指/卷绕电池配置。阴极、隔板和阳极在芯中同步叉指,并在外圈中同步缠绕,形成一体的全电池。利用这种新型电池配置,锂离子可以在相邻的阴极和阳极之间传输,从而显著缩短锂离子的传输距离,改善电化学反应动力学。为了评估这种电池配置的电化学性能,本研究通过数值模拟研究了各种参数对电化学性能的影响,包括电子电导率、电极孔隙率、电极线宽、隔膜厚度和缠绕外圈的数量。结果表明,电子电导率是决定电化学性能的最关键因素。结合多材料3D打印,本研究中提出的电池配置可用于构建具有更高能量密度的LIBs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
期刊最新文献
Hybrid energy storage systems for fast-developing renewable energy plants Critical review on the controllable growth and post-annealing on the heterojunction of the kesterite solar cells Synthesis and growth of solution-processed chiral perovskites Introduction of novel method of cyclic self-heating for the experimental quantification of the efficiency of caloric materials shown for LaFe11,4Mn0,35Si1,26Hx Effect of preparation routes on the performance of a multi-component AB2-type hydrogen storage alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1