High magnetic field behavior of strongly correlated uranium-based compounds

IF 35 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Advances in Physics Pub Date : 2017-10-02 DOI:10.1080/00018732.2017.1466475
J. Mydosh
{"title":"High magnetic field behavior of strongly correlated uranium-based compounds","authors":"J. Mydosh","doi":"10.1080/00018732.2017.1466475","DOIUrl":null,"url":null,"abstract":"Magnetic fields are now available to 100 T (pulsed), 45 T (static) at temperatures below 0.3 K. Such technical developments allow the study and tuning of (quantum) phase transitions, unusual magnetic structures and (high-temperature) superconductors in a variety of quantum materials. An especially important class of strongly correlated electron materials is the heavy Fermi liquids (HFLs) displaying numerous reduced-moment antiferromagnets, quantum critical points, unconventional superconductivity, hidden order (HO) and other mysterious ground states. Among the ‘heavy fermions’, the duality of 5f electrons in uranium-based compounds introduces interesting behavior that can be affected by large magnetic fields. I list a few such heavy fermion materials to be considered: URu2Si2 and its tunable hidden state, UBe13 and UPt3 as very HFL paramagnets that become superconducting, the magnetic superconductors UPd2Al3 and UNi2Al3, and the ferromagnetic s UGe2, URhGe and UCoGe. There are also the suggested metamagnetic Fermi-surface reconstructed intermetallic compounds such as UPt2Si2 and UCo2Si2. Present research attention focuses on the high-field behavior (30–40 T) of URu2Si2 and its destruction of HO. These and other U-based systems, e.g. UAu2Si2, UIrGe, etc., expand the opportunities of high magnetic field studies far into the future.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":35.0000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2017.1466475","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2017.1466475","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 7

Abstract

Magnetic fields are now available to 100 T (pulsed), 45 T (static) at temperatures below 0.3 K. Such technical developments allow the study and tuning of (quantum) phase transitions, unusual magnetic structures and (high-temperature) superconductors in a variety of quantum materials. An especially important class of strongly correlated electron materials is the heavy Fermi liquids (HFLs) displaying numerous reduced-moment antiferromagnets, quantum critical points, unconventional superconductivity, hidden order (HO) and other mysterious ground states. Among the ‘heavy fermions’, the duality of 5f electrons in uranium-based compounds introduces interesting behavior that can be affected by large magnetic fields. I list a few such heavy fermion materials to be considered: URu2Si2 and its tunable hidden state, UBe13 and UPt3 as very HFL paramagnets that become superconducting, the magnetic superconductors UPd2Al3 and UNi2Al3, and the ferromagnetic s UGe2, URhGe and UCoGe. There are also the suggested metamagnetic Fermi-surface reconstructed intermetallic compounds such as UPt2Si2 and UCo2Si2. Present research attention focuses on the high-field behavior (30–40 T) of URu2Si2 and its destruction of HO. These and other U-based systems, e.g. UAu2Si2, UIrGe, etc., expand the opportunities of high magnetic field studies far into the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强相关铀基化合物的高磁场行为
磁场现在可用于100 T(脉冲),45 温度低于0.3时的T(静态) K.这样的技术发展允许研究和调谐各种量子材料中的(量子)相变、不寻常的磁性结构和(高温)超导体。一类特别重要的强相关电子材料是重费米液体(HFL),它显示出许多减矩反铁磁体、量子临界点、非常规超导性、隐序(HO)和其他神秘基态。在“重费米子”中,铀基化合物中5f电子的对偶性引入了有趣的行为,这种行为可能受到大磁场的影响。我列出了一些需要考虑的重费米子材料:URu2Si2及其可调谐的隐藏态,UBe13和UPt3是成为超导的HFL顺磁体,磁性超导体UPd2Al3和UNi2Al3,以及铁磁材料UGe2、URhGe和UCoGe。还提出了超磁性费米表面重建的金属间化合物,如UPt2Si2和UCo2Si2。目前的研究重点是高场行为(30-40 T) URu2Si2及其对HO的破坏。这些和其他基于U的系统,例如UAu2Si2、UIrGe等,将高磁场研究的机会扩展到了遥远的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Physics
Advances in Physics 物理-物理:凝聚态物理
CiteScore
67.60
自引率
0.00%
发文量
1
期刊介绍: Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.
期刊最新文献
Jan Zaanen – In memoriam Ambipolarity of hydrogen in matter revealed by muons Martingales for physicists: a treatise on stochastic thermodynamics and beyond A review of uranium-based thin films Path integrals and stochastic calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1