Taylor J. Ellison, B. Jurgielewicz, S. Stice, Yao Yao
{"title":"Quantifying Neural Stem Cell-Derived Extracellular Vesicle Uptake Using Imaging Flow Cytometry","authors":"Taylor J. Ellison, B. Jurgielewicz, S. Stice, Yao Yao","doi":"10.33696/cancerimmunol.3.049","DOIUrl":null,"url":null,"abstract":"Nanomedicine, which includes nanoparticles and other nanomaterials for diagnosis and therapeutic delivery to treat numerous diseases, is making advances [1]. Utilizing engineered nanomaterials as delivery shuttles for therapeutics provides an opportunity to increase targeting specificity for treatments of certain disorders, as well as provide intrinsic benefits to cell systems of interest [2,3]. However, it is important to understand the functional properties of materials in pre-clinical studies. Proper selection of nanomaterials could be enhanced by recent studies in the field of cellular uptake of nanomaterials. The study of EVs is an expanding field within nanomedicine and are one such example of nanomaterials as a drug delivery shuttle. EVs are lipid-bound vesicles ranging in size from 40-1000 nm that mediate intercellular communication through shuttling nucleic acids, protein and lipids between cells. Once thought to be the secreted waste of cells, EVs have been engineered as drug delivery vectors due to multiple intrinsic benefits such as biocompatibility of genetic materials, therapeutic potentials, low immunogenicity and toxicity, ability to cross bio-barriers and for repeated dosing, various routes of administration [4-6]. Previous work from our group and others indicates that the therapeutic potential and Abstract","PeriodicalId":73633,"journal":{"name":"Journal of cancer immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/cancerimmunol.3.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomedicine, which includes nanoparticles and other nanomaterials for diagnosis and therapeutic delivery to treat numerous diseases, is making advances [1]. Utilizing engineered nanomaterials as delivery shuttles for therapeutics provides an opportunity to increase targeting specificity for treatments of certain disorders, as well as provide intrinsic benefits to cell systems of interest [2,3]. However, it is important to understand the functional properties of materials in pre-clinical studies. Proper selection of nanomaterials could be enhanced by recent studies in the field of cellular uptake of nanomaterials. The study of EVs is an expanding field within nanomedicine and are one such example of nanomaterials as a drug delivery shuttle. EVs are lipid-bound vesicles ranging in size from 40-1000 nm that mediate intercellular communication through shuttling nucleic acids, protein and lipids between cells. Once thought to be the secreted waste of cells, EVs have been engineered as drug delivery vectors due to multiple intrinsic benefits such as biocompatibility of genetic materials, therapeutic potentials, low immunogenicity and toxicity, ability to cross bio-barriers and for repeated dosing, various routes of administration [4-6]. Previous work from our group and others indicates that the therapeutic potential and Abstract