Bolin Yang, Yifan Xu, Zhihong Chen, Hang Yang, Yuchen Hu, Haoqin Wu, Mingfeng Xing, Jianguo Guan, Wei Li
{"title":"Electromagnetic Property Modulation of Flaky Ferromagnetic 304 Stainless-Steel Powders for Microwave Absorption at Elevated Temperatures","authors":"Bolin Yang, Yifan Xu, Zhihong Chen, Hang Yang, Yuchen Hu, Haoqin Wu, Mingfeng Xing, Jianguo Guan, Wei Li","doi":"10.3390/magnetochemistry9090208","DOIUrl":null,"url":null,"abstract":"Soft magnetic metallic absorbents suffer from severe oxidation, reduction in permeability and deterioration in microwave absorption when exposed to high temperatures. In this study, we prepared flaky 304 stainless-steel powders as new microwave absorbents via deformation-induced ferromagnetism. The 304 stainless-steel powders showed significant increases in saturation magnetization (Ms) from 1.03 to 82.46 emu/g when their shape was changed from spheroids to flakes; the Ms further increased to 92.29 emu/g after heat treatment at 500 °C in air. The permeability of 304 alloy powders also showed an obvious increase after ball milling and remained roughly stable after heat treatment at 500 °C in air. Moreover, the permittivity exhibited a sharp decrease after heat treatment, enabling the improvement of impedance matching and microwave absorption. After heat treatment at 500 °C in air for 100 h, the simulated reflection loss of 304 stainless-steel powders with wax still showed attractive levels, giving a minimum value of −22 dB and remaining below −6 dB over 8.5–16.5 GHz at a thickness of 2 mm. Our work can help to include paramagnetic alloy systems as new microwave absorbents for working in harsh environments.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9090208","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Soft magnetic metallic absorbents suffer from severe oxidation, reduction in permeability and deterioration in microwave absorption when exposed to high temperatures. In this study, we prepared flaky 304 stainless-steel powders as new microwave absorbents via deformation-induced ferromagnetism. The 304 stainless-steel powders showed significant increases in saturation magnetization (Ms) from 1.03 to 82.46 emu/g when their shape was changed from spheroids to flakes; the Ms further increased to 92.29 emu/g after heat treatment at 500 °C in air. The permeability of 304 alloy powders also showed an obvious increase after ball milling and remained roughly stable after heat treatment at 500 °C in air. Moreover, the permittivity exhibited a sharp decrease after heat treatment, enabling the improvement of impedance matching and microwave absorption. After heat treatment at 500 °C in air for 100 h, the simulated reflection loss of 304 stainless-steel powders with wax still showed attractive levels, giving a minimum value of −22 dB and remaining below −6 dB over 8.5–16.5 GHz at a thickness of 2 mm. Our work can help to include paramagnetic alloy systems as new microwave absorbents for working in harsh environments.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.