Nowcasting domestic liquidity in the Philippines using machine learning algorithms

Juan Rufino Reyes
{"title":"Nowcasting domestic liquidity in the Philippines using machine learning algorithms","authors":"Juan Rufino Reyes","doi":"10.37907/1erp2202d","DOIUrl":null,"url":null,"abstract":"This study utilizes a number of algorithms used in machine learning to nowcast domestic liquidity growth in the Philippines. It employs regularization (i.e., Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (ENET)) and tree-based (i.e., Random Forest, Gradient Boosted Trees) methods in order to support the BSP’s current suite of macroeconomic models used to forecast and analyze liquidity. Hence, this study evaluates the accuracy of time series models (e.g., Autoregressive, Dynamic Factor), regularization, and tree-based methods through an expanding window. The results indicate that Ridge Regression, LASSO, ENET, Random Forest, and Gradient Boosted Trees provide better estimates than the traditional time series models, with month-ahead nowcasts yielding lower Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Furthermore, regularization and tree-based methods facilitate the identification of macroeconomic indicators that are significant to specify parsimonious nowcasting models.","PeriodicalId":91420,"journal":{"name":"The Philippine review of economics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Philippine review of economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37907/1erp2202d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes a number of algorithms used in machine learning to nowcast domestic liquidity growth in the Philippines. It employs regularization (i.e., Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (ENET)) and tree-based (i.e., Random Forest, Gradient Boosted Trees) methods in order to support the BSP’s current suite of macroeconomic models used to forecast and analyze liquidity. Hence, this study evaluates the accuracy of time series models (e.g., Autoregressive, Dynamic Factor), regularization, and tree-based methods through an expanding window. The results indicate that Ridge Regression, LASSO, ENET, Random Forest, and Gradient Boosted Trees provide better estimates than the traditional time series models, with month-ahead nowcasts yielding lower Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Furthermore, regularization and tree-based methods facilitate the identification of macroeconomic indicators that are significant to specify parsimonious nowcasting models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习算法预测菲律宾国内流动性
这项研究利用机器学习中使用的许多算法来预测菲律宾国内流动性的增长。它采用正则化(即岭回归、最小绝对收缩和选择算子(LASSO)、弹性网(ENET))和基于树的(即随机森林、梯度增强树)方法,以支持BSP当前用于预测和分析流动性的一套宏观经济模型。因此,本研究通过扩展窗口评估时间序列模型(如自回归、动态因子)、正则化和基于树的方法的准确性。结果表明,岭回归、LASSO、ENET、随机森林和梯度增强树比传统的时间序列模型提供了更好的估计,月前的nowcast产生了更低的均方根误差(RMSE)和平均绝对误差(MAE)。此外,正则化和基于树的方法有助于确定宏观经济指标,这些指标对于指定简约的预测模型非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward a general neoclassical theory of economic growth Piketty inequality, meta-market failures and the new role of the state Diamond and Dybvig in developing economies and in a digital world The 16th century Carrera del Pacífico: its sailor-merchants and their trade goods Measuring fiscal policy sustainability in developing Asia: what does the Markov Switching Augmented Dickey-Fuller Test tell us?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1