Sima – an Open-source Simulation Framework for Realistic Large-scale Individual-level Data Generation

Q3 Social Sciences International Journal of Microsimulation Pub Date : 2021-12-31 DOI:10.34196/ijm.00240
S. Tikka, Jussi Hakanen, Mirka Saarela, J. Karvanen
{"title":"Sima – an Open-source Simulation Framework for Realistic Large-scale Individual-level Data Generation","authors":"S. Tikka, Jussi Hakanen, Mirka Saarela, J. Karvanen","doi":"10.34196/ijm.00240","DOIUrl":null,"url":null,"abstract":"We propose a framework for realistic data generation and the simulation of complex systems and demonstrate its capabilities in a health domain example. The main use cases of the framework are predicting the development of variables of interest, evaluating the impact of interventions and policy decisions, and supporting statistical method development. We present the fundamentals of the framework by using rigorous mathematical definitions. The framework supports calibration to a real population as well as various manipulations and data collection processes. The freely available opensource implementation in R embraces efficient data structures, parallel computing, and fast random number generation, hence ensuring reproducibility and scalability. With the framework, it is possible to run dailylevel simulations for populations of millions of individuals for decades of simulated time. An example using the occurrence of stroke, type 2 diabetes, and mortality illustrates the usage of the framework in the Finnish context. In the example, we demonstrate the data collection functionality by studying the impact of nonparticipation on the estimated risk models and interventions related to controlling excessive salt consumption. DOI: https:// doi. org/ 10. 34196/ ijm. 00240","PeriodicalId":37916,"journal":{"name":"International Journal of Microsimulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microsimulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34196/ijm.00240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a framework for realistic data generation and the simulation of complex systems and demonstrate its capabilities in a health domain example. The main use cases of the framework are predicting the development of variables of interest, evaluating the impact of interventions and policy decisions, and supporting statistical method development. We present the fundamentals of the framework by using rigorous mathematical definitions. The framework supports calibration to a real population as well as various manipulations and data collection processes. The freely available opensource implementation in R embraces efficient data structures, parallel computing, and fast random number generation, hence ensuring reproducibility and scalability. With the framework, it is possible to run dailylevel simulations for populations of millions of individuals for decades of simulated time. An example using the occurrence of stroke, type 2 diabetes, and mortality illustrates the usage of the framework in the Finnish context. In the example, we demonstrate the data collection functionality by studying the impact of nonparticipation on the estimated risk models and interventions related to controlling excessive salt consumption. DOI: https:// doi. org/ 10. 34196/ ijm. 00240
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sima——一个用于真实的大规模个人级数据生成的开源模拟框架
我们提出了一个用于真实数据生成和复杂系统模拟的框架,并在健康领域示例中展示了其功能。该框架的主要用例是预测感兴趣的变量的发展,评估干预措施和政策决策的影响,以及支持统计方法的发展。我们通过使用严格的数学定义来介绍框架的基本原理。该框架支持对真实人口的校准以及各种操作和数据收集过程。R中免费提供的开源实现包括高效的数据结构、并行计算和快速随机数生成,从而确保了可再现性和可扩展性。有了这个框架,就有可能在几十年的模拟时间内对数百万个体的种群进行日常模拟。一个使用中风、2型糖尿病和死亡率的例子说明了该框架在芬兰背景下的使用。在这个例子中,我们通过研究不参与对估计风险模型的影响以及与控制过量盐消费相关的干预措施来展示数据收集功能。DOI:https://DOI。org/10。34196/ijm。00240
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Microsimulation
International Journal of Microsimulation Mathematics-Modeling and Simulation
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: The IJM covers research in all aspects of microsimulation modelling. It publishes high quality contributions making use of microsimulation models to address specific research questions in all scientific areas, as well as methodological and technical issues. IJM concern: the description, validation, benchmarking and replication of microsimulation models; results coming from microsimulation models, in particular policy evaluation and counterfactual analysis; technical or methodological aspect of microsimulation modelling; reviews of models and results, as well as of technical or methodological issues.
期刊最新文献
Editorial: Special Issue in honour of Vale Emerita Professor Ann Harding AO SWITCH: A Tax-Benefit Model for Ireland Linked to Survey and Register Data Tax and Benefit Policies to Reduce Poverty in the Netherlands: A Microsimulation Analysis Editorial and outline of the special issue The Impact of COVID-19 on Living Standards: Addressing the Challenges of Nowcasting Unprecedented Macroeconomic Shocks with Scant Data and Uncharted Economic Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1