EXPERIMENTAL ANALYSIS OF THRESHING MAIZE SEEDS WITH HIGH MOISTURE CONTENT

IF 0.6 Q4 AGRICULTURAL ENGINEERING INMATEH-Agricultural Engineering Pub Date : 2023-04-30 DOI:10.35633/inmateh-69-12
Yujie Deng, Guohai Zhang, A. Zhang, Jitan Lian, Jiaguo Yao, Xin Wang, Xiaohui Yang
{"title":"EXPERIMENTAL ANALYSIS OF THRESHING MAIZE SEEDS WITH HIGH MOISTURE CONTENT","authors":"Yujie Deng, Guohai Zhang, A. Zhang, Jitan Lian, Jiaguo Yao, Xin Wang, Xiaohui Yang","doi":"10.35633/inmateh-69-12","DOIUrl":null,"url":null,"abstract":"To address the problems of high breakage rates, high entrainment losses and many unthreshed kernels when harvesting high moisture content maize seeds, a high moisture content maize seed threshing test was designed based on a multifunctional seed harvester stand designed by this group.In order to determine the optimum operating parameters of the threshing unit, single-factor experiments and orthogonal tests were carried out using the threshing drum speed, concave plate clearance and feed rate as test factors and the crushing rate, unthreshing rate, entrained loss rate and trash content rate as test evaluation indicators.The optimum combination of test factors obtained for the harvesting of maize at 32% to 34% moisture content was a drum speed of 346.55r/min, a concave plate clearance of 44.39mm and a feed rate of 9.739Kg/s.After repeated experiments on the bench, the test results with optimum parameters were 6.311% crushing rate, 0.187% unthreshing rate, 0.912% entrained loss rate and 4.251% impurity rate, at which point the crushing rate was the lowest and the other three met national standards.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-69-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To address the problems of high breakage rates, high entrainment losses and many unthreshed kernels when harvesting high moisture content maize seeds, a high moisture content maize seed threshing test was designed based on a multifunctional seed harvester stand designed by this group.In order to determine the optimum operating parameters of the threshing unit, single-factor experiments and orthogonal tests were carried out using the threshing drum speed, concave plate clearance and feed rate as test factors and the crushing rate, unthreshing rate, entrained loss rate and trash content rate as test evaluation indicators.The optimum combination of test factors obtained for the harvesting of maize at 32% to 34% moisture content was a drum speed of 346.55r/min, a concave plate clearance of 44.39mm and a feed rate of 9.739Kg/s.After repeated experiments on the bench, the test results with optimum parameters were 6.311% crushing rate, 0.187% unthreshing rate, 0.912% entrained loss rate and 4.251% impurity rate, at which point the crushing rate was the lowest and the other three met national standards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高含水率玉米种子脱粒试验分析
针对高含水率玉米种子收获时破碎率高、夹带损失大、未脱粒多等问题,基于本课题组设计的多功能种子收获站,设计了高含水率玉米种子脱粒试验。为确定脱粒装置的最佳运行参数,以脱粒滚筒转速、凹板间隙、进料速度为试验因素,以破碎率、脱粒率、夹带损失率、垃圾含量为试验评价指标,进行了单因素试验和正交试验。在32% ~ 34%水分条件下收获玉米的最佳试验因素组合为:滚筒转速346.55r/min,凹板间隙44.39mm,进料速度9.739Kg/s。经台架反复试验,最佳参数为破碎率6.311%、脱粒率0.187%、夹带损失率0.912%、杂质率4.251%,破碎率最低,其余三项均达到国家标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
期刊最新文献
TECHNICAL AND ENVIRONMENTAL EVALUATION OF USING RICE HUSKS AND SOLAR ENERGY ON THE ACTIVATION OF ABSORPTION CHILLERS IN THE CARIBBEAN REGION. CASE STUDY: BARRANQUILLA ALGORITHM FOR OPTIMIZING THE MOVEMENT OF A MOUNTED MACHINETRACTOR UNIT IN THE HEADLAND OF AN IRREGULARLY SHAPED FIELD STUDY ON THE INFLUENCE OF PCA PRE-TREATMENT ON PIG FACE IDENTIFICATION WITH KNN IoT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK DESIGN AND EXPERIMENT OF A SINGLE-ROW SMALL GRAIN PRECISION SEEDER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1