V. Vo, V. Nguyen, Van-Diep Le, Q. Phan, L. Phan, Huy-Bach Nguyen, Nhi-Dien Nguyen
{"title":"A Digital Controller for Reactivity Monitoring and Power Control","authors":"V. Vo, V. Nguyen, Van-Diep Le, Q. Phan, L. Phan, Huy-Bach Nguyen, Nhi-Dien Nguyen","doi":"10.1155/2023/2839654","DOIUrl":null,"url":null,"abstract":"This paper introduces a controller unit for reactivity monitoring and automatic power control that was designed and constructed for the 500 kW Dalat Nuclear Research Reactor (DNRR). For power control and reactivity calculations, frequency signals from neutron measurement channels of starting and working ranges of the reactor are used. Two abovementioned independent functions were combined in an Artix-7 FPGA board for determining reactivity values by solving the point reactor kinetics equations with six delayed neutron groups and for stabilizing the reactor power at preset levels by determining the unbalance voltage signal to control the automatic control rod. With real-time calculations, the newly developed controller can monitor the reactor reactivity and control the reactor power online. The developed controller unit’s reactivity measuring and power stabilizing capabilities were assessed using the DNRR in normal operation and assumed emergency conditions and compared with those of the preexisting imported BNO-102R1 module of the DNRR control and protection system, known as ASUZ-14R. The results of the experiments show that the produced FPGA-based unit and the BNO-102R1 unit have the same technical characteristics and features, with the disparities being less than 5% and 1%, respectively, in reactivity measurement and power stabilization. The experimental data of reactivity measurements by the FPGA-based unit and the calculation results were also compared and found that the relative deviations between those are also less than 10%. The developed controller unit is capable of carrying out a variety of training and operational experiments on the DNRR.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/2839654","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a controller unit for reactivity monitoring and automatic power control that was designed and constructed for the 500 kW Dalat Nuclear Research Reactor (DNRR). For power control and reactivity calculations, frequency signals from neutron measurement channels of starting and working ranges of the reactor are used. Two abovementioned independent functions were combined in an Artix-7 FPGA board for determining reactivity values by solving the point reactor kinetics equations with six delayed neutron groups and for stabilizing the reactor power at preset levels by determining the unbalance voltage signal to control the automatic control rod. With real-time calculations, the newly developed controller can monitor the reactor reactivity and control the reactor power online. The developed controller unit’s reactivity measuring and power stabilizing capabilities were assessed using the DNRR in normal operation and assumed emergency conditions and compared with those of the preexisting imported BNO-102R1 module of the DNRR control and protection system, known as ASUZ-14R. The results of the experiments show that the produced FPGA-based unit and the BNO-102R1 unit have the same technical characteristics and features, with the disparities being less than 5% and 1%, respectively, in reactivity measurement and power stabilization. The experimental data of reactivity measurements by the FPGA-based unit and the calculation results were also compared and found that the relative deviations between those are also less than 10%. The developed controller unit is capable of carrying out a variety of training and operational experiments on the DNRR.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.