{"title":"Energy analysis of cavitation bubbles under dual-frequency acoustic excitation","authors":"Lv Liang, Hu Kai, Fei Liu, L. Yawei, B. Cui","doi":"10.24425/aoa.2022.142898","DOIUrl":null,"url":null,"abstract":"Cavitation has been widely used in wastewater degradation, material synthesis and biomedical field under dual-frequency acoustic excitation. The applications of cavitation are closely related to the power (i.e. the rate of internal energy accumulation) during bubble collapse. The Keller–Miksis equation considering liquid viscosity, surface tension and liquid compressibility is used to describe the radial motion of the bubble. The model is built in predicting the power during bubble collapse under dual-frequency acoustic excitation. The influences of parameters (i.e. phase difference, frequency difference, and amplitude ratio) on the power are investigated numerically. With the increase of phase difference, the power can be fluctuated in a wide range at all conditions. Three typical characteristics of the power appear under the effects of frequency difference and amplitude ratio. With the increase of amplitude ratio, if the frequency difference is small, the power has two maximum values; and if the frequency difference is medium, there is a maximum value. Otherwise, the power monotonously decreases. The results can provide theoretical references for the selections of experimental parameters of sono-luminescence and sonochemistry in the dual-frequency acoustic field.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142898","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Cavitation has been widely used in wastewater degradation, material synthesis and biomedical field under dual-frequency acoustic excitation. The applications of cavitation are closely related to the power (i.e. the rate of internal energy accumulation) during bubble collapse. The Keller–Miksis equation considering liquid viscosity, surface tension and liquid compressibility is used to describe the radial motion of the bubble. The model is built in predicting the power during bubble collapse under dual-frequency acoustic excitation. The influences of parameters (i.e. phase difference, frequency difference, and amplitude ratio) on the power are investigated numerically. With the increase of phase difference, the power can be fluctuated in a wide range at all conditions. Three typical characteristics of the power appear under the effects of frequency difference and amplitude ratio. With the increase of amplitude ratio, if the frequency difference is small, the power has two maximum values; and if the frequency difference is medium, there is a maximum value. Otherwise, the power monotonously decreases. The results can provide theoretical references for the selections of experimental parameters of sono-luminescence and sonochemistry in the dual-frequency acoustic field.
期刊介绍:
Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like:
acoustical measurements and instrumentation,
acoustics of musics,
acousto-optics,
architectural, building and environmental acoustics,
bioacoustics,
electroacoustics,
linear and nonlinear acoustics,
noise and vibration,
physical and chemical effects of sound,
physiological acoustics,
psychoacoustics,
quantum acoustics,
speech processing and communication systems,
speech production and perception,
transducers,
ultrasonics,
underwater acoustics.