A novel swarm intelligence optimized extreme learning machine for predicting soil shear strength: A case study at Hoa Vuong new urban project (Vietnam)

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY VIETNAM JOURNAL OF EARTH SCIENCES Pub Date : 2023-05-15 DOI:10.15625/2615-9783/18338
Viet-Ha Nhu, Binh Thai Pham, Dieu Bui Tien
{"title":"A novel swarm intelligence optimized extreme learning machine for predicting soil shear strength: A case study at Hoa Vuong new urban project (Vietnam)","authors":"Viet-Ha Nhu, Binh Thai Pham, Dieu Bui Tien","doi":"10.15625/2615-9783/18338","DOIUrl":null,"url":null,"abstract":"In geotechnical engineering, soil shear strength is one of the most important parameters used in the design and construction of construction projects. However, determining this parameter in the laboratory is costly and time-consuming. Therefore, the main objective of this work is to develop a new alternative machine learning approach based on extreme learning machine (ELM) and Particle Swarm Optimization (PSO), namely PSO-ELM, for the shear strength prediction of soil for the Hoa Vuong new urban project in Nam Dinh province, North Vietnam. For this purpose, twelve soil parameters were collected on data from a survey of 155 soil samples to construct and validate the proposed model. We assessed the model's performance using the root-mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2). We compared the model's capability with five benchmark models, support vector regression (SVR), Gaussian process (GP), multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN), and the fast-decision tree (Fast-DT). The results revealed that the proposed PSO-ELM model yielded the highest prediction performance and outperformed the five benchmark models. It suggests that PSO-ELM can be an alternative method in estimating the shear strength of soil that would help geotechnical engineers reduce the cost of construction.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/18338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In geotechnical engineering, soil shear strength is one of the most important parameters used in the design and construction of construction projects. However, determining this parameter in the laboratory is costly and time-consuming. Therefore, the main objective of this work is to develop a new alternative machine learning approach based on extreme learning machine (ELM) and Particle Swarm Optimization (PSO), namely PSO-ELM, for the shear strength prediction of soil for the Hoa Vuong new urban project in Nam Dinh province, North Vietnam. For this purpose, twelve soil parameters were collected on data from a survey of 155 soil samples to construct and validate the proposed model. We assessed the model's performance using the root-mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2). We compared the model's capability with five benchmark models, support vector regression (SVR), Gaussian process (GP), multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN), and the fast-decision tree (Fast-DT). The results revealed that the proposed PSO-ELM model yielded the highest prediction performance and outperformed the five benchmark models. It suggests that PSO-ELM can be an alternative method in estimating the shear strength of soil that would help geotechnical engineers reduce the cost of construction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的群体智能优化极限学习机用于预测土壤抗剪强度:以越南Hoa Vuong新城市项目为例
在岩土工程中,土壤抗剪强度是建筑工程设计和施工中最重要的参数之一。然而,在实验室中确定这一参数既昂贵又耗时。因此,本工作的主要目标是开发一种基于极限学习机(ELM)和粒子群优化(PSO)的新的替代机器学习方法,即PSO-ELM,用于越南北部南定省Hoa Vuong新城市项目的土壤抗剪强度预测。为此,从155个土壤样本的调查数据中收集了12个土壤参数,以构建和验证所提出的模型。我们使用均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)评估了模型的性能。我们将该模型的能力与五个基准模型进行了比较,即支持向量回归(SVR)、高斯过程(GP)、多层感知器神经网络(MLP-NN)、径向基函数神经网络(RBF-NN)和快速决策树(fast DT)。结果表明,所提出的PSO-ELM模型产生了最高的预测性能,并且优于五个基准模型。这表明PSO-ELM可以作为估算土壤抗剪强度的一种替代方法,有助于岩土工程师降低施工成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
期刊最新文献
Hybrid approach for permeability prediction in porous media: combining FFT simulations with machine learning Identification of the active faults and seismotectonic zonation of Laos territory Multi-step-ahead prediction of water levels using machine learning: A comparative analysis in the Vietnamese Mekong Delta Temporal and spatial variation in water quality in the Son La hydropower Reservoir, Northwestern Vietnam Application of hybrid modeling to predict California bearing ratio of soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1