Jie Liu, Xiangyu Zhang, X. Zeng, Zechang Xiong, Y. Liu, Yan Lei, Bing Yang
{"title":"Effect of bias voltages on microstructure and mechanical properties of (AlCrNbSiTi)N high entropy alloy nitride coatings deposited by arc ion plating","authors":"Jie Liu, Xiangyu Zhang, X. Zeng, Zechang Xiong, Y. Liu, Yan Lei, Bing Yang","doi":"10.1080/02670844.2023.2236829","DOIUrl":null,"url":null,"abstract":"ABSTRACT (AlCrNbSiTi)N coatings were prepared by arc ion plating at a bias voltage in the range of −50 to −200 V. The as-deposited coatings were all found to have a face-centred cubic structure and exhibit columnar crystal. Si3N4 is distributed in the columnar grains in the form of a network, which separates the columnar grains into fine grains. Si3N4 presents a crystalline state and grows coherently with the surrounding grains to form a nc-(AlCrNbTi)N/nc-Si3N4 nanocomposite structure. The coating with the finest mechanical characteristics was applied at −200 V. The hardness, elastic modulus and wear rate are 34.76, 425 GPa and 0.82 × 10−9 mm3 N−1 m−1, respectively. Based on the outstanding mechanical performance of the coating, it is concluded that the (AlCrNbSiTi)N protective coating has a broad range of potential applications.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"495 - 505"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2236829","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT (AlCrNbSiTi)N coatings were prepared by arc ion plating at a bias voltage in the range of −50 to −200 V. The as-deposited coatings were all found to have a face-centred cubic structure and exhibit columnar crystal. Si3N4 is distributed in the columnar grains in the form of a network, which separates the columnar grains into fine grains. Si3N4 presents a crystalline state and grows coherently with the surrounding grains to form a nc-(AlCrNbTi)N/nc-Si3N4 nanocomposite structure. The coating with the finest mechanical characteristics was applied at −200 V. The hardness, elastic modulus and wear rate are 34.76, 425 GPa and 0.82 × 10−9 mm3 N−1 m−1, respectively. Based on the outstanding mechanical performance of the coating, it is concluded that the (AlCrNbSiTi)N protective coating has a broad range of potential applications.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.