Domenico De Stefano, V. Fuccella, M. P. Vitale, S. Zaccarin
{"title":"Quality issues in co-authorship data of a national scientific community","authors":"Domenico De Stefano, V. Fuccella, M. P. Vitale, S. Zaccarin","doi":"10.1017/nws.2022.40","DOIUrl":null,"url":null,"abstract":"Abstract A stream of research on co-authorship, used as a proxy of scholars’ collaborative behavior, focuses on members of a given scientific community defined at discipline and/or national basis for which co-authorship data have to be retrieved. Recent literature pointed out that international digital libraries provide partial coverage of the entire scholar scientific production as well as under-coverage of the scholars in the community. Bias in retrieving co-authorship data of the community of interest can affect network construction and network measures in several ways, providing a partial picture of the real collaboration in writing papers among scholars. In this contribution, we collected bibliographic records of Italian academic statisticians from an online platform (IRIS) available at most universities. Even if it guarantees a high coverage rate of our population and its scientific production, it is necessary to deal with some data quality issues. Thus, a web scraping procedure based on a semi-automatic tool to retrieve publication metadata, as well as data management tools to detect duplicate records and to reconcile authors, is proposed. As a result of our procedure, it emerged that collaboration is an active and increasing practice for Italian academic statisticians with some differences according to the gender, the academic ranking, and the university location of scholars. The heuristic procedure to accomplish data quality issues in the IRIS platform can represent a working case report to adapt to other bibliographic archives with similar characteristics.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract A stream of research on co-authorship, used as a proxy of scholars’ collaborative behavior, focuses on members of a given scientific community defined at discipline and/or national basis for which co-authorship data have to be retrieved. Recent literature pointed out that international digital libraries provide partial coverage of the entire scholar scientific production as well as under-coverage of the scholars in the community. Bias in retrieving co-authorship data of the community of interest can affect network construction and network measures in several ways, providing a partial picture of the real collaboration in writing papers among scholars. In this contribution, we collected bibliographic records of Italian academic statisticians from an online platform (IRIS) available at most universities. Even if it guarantees a high coverage rate of our population and its scientific production, it is necessary to deal with some data quality issues. Thus, a web scraping procedure based on a semi-automatic tool to retrieve publication metadata, as well as data management tools to detect duplicate records and to reconcile authors, is proposed. As a result of our procedure, it emerged that collaboration is an active and increasing practice for Italian academic statisticians with some differences according to the gender, the academic ranking, and the university location of scholars. The heuristic procedure to accomplish data quality issues in the IRIS platform can represent a working case report to adapt to other bibliographic archives with similar characteristics.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.