首页 > 最新文献

Network Science最新文献

英文 中文
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide 通过将网络分析应用于不良童年经历和青少年自杀的系统地图,为预防措施提供指导
IF 1.7 Q2 Social Sciences Pub Date : 2024-05-24 DOI: 10.1017/nws.2024.8
Benjamin D. Maldonado, Ryan Schuerkamp, Cassidy M. Martin, Ketra L. Rice, Nisha Nataraj, Margaret M. Brown, Christopher R. Harper, Curtis Florence, Philippe J. Giabbanelli
Suicide is a leading cause of death in the United States, particularly among adolescents. In recent years, suicidal ideation, attempts, and fatalities have increased. Systems maps can effectively represent complex issues such as suicide, thus providing decision-support tools for policymakers to identify and evaluate interventions. While network science has served to examine systems maps in fields such as obesity, there is limited research at the intersection of suicidology and network science. In this paper, we apply network science to a large causal map of adverse childhood experiences (ACEs) and suicide to address this gap. The National Center for Injury Prevention and Control (NCIPC) within the Centers for Disease Control and Prevention recently created a causal map that encapsulates ACEs and adolescent suicide in 361 concept nodes and 946 directed relationships. In this study, we examine this map and three similar models through three related questions: (Q1) how do existing network-based models of suicide differ in terms of node- and network-level characteristics? (Q2) Using the NCIPC model as a unifying framework, how do current suicide intervention strategies align with prevailing theories of suicide? (Q3) How can the use of network science on the NCIPC model guide suicide interventions?
在美国,自杀是导致死亡的一个主要原因,尤其是在青少年中。近年来,自杀意念、自杀未遂和死亡人数都有所增加。系统地图可以有效地表示自杀等复杂问题,从而为决策者提供决策支持工具,以确定和评估干预措施。虽然网络科学已在肥胖症等领域用于研究系统地图,但在自杀学和网络科学的交叉领域,研究还很有限。在本文中,我们将网络科学应用于童年不良经历(ACE)与自杀的大型因果关系图,以弥补这一不足。美国疾病控制和预防中心(Centers for Disease Control and Prevention)下属的国家伤害预防和控制中心(NCIPC)最近绘制了一张因果关系图,将ACE和青少年自杀囊括在361个概念节点和946个定向关系中。在本研究中,我们通过三个相关问题对该地图和三个类似模型进行了研究:(问题1)现有的基于网络的自杀模型在节点和网络层面的特征方面有何不同?(Q2) 以 NCIPC 模型为统一框架,当前的自杀干预策略如何与流行的自杀理论保持一致?(Q3) 如何利用网络科学来指导 NCIPC 模型中的自杀干预措施?
{"title":"Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide","authors":"Benjamin D. Maldonado, Ryan Schuerkamp, Cassidy M. Martin, Ketra L. Rice, Nisha Nataraj, Margaret M. Brown, Christopher R. Harper, Curtis Florence, Philippe J. Giabbanelli","doi":"10.1017/nws.2024.8","DOIUrl":"https://doi.org/10.1017/nws.2024.8","url":null,"abstract":"\u0000 Suicide is a leading cause of death in the United States, particularly among adolescents. In recent years, suicidal ideation, attempts, and fatalities have increased. Systems maps can effectively represent complex issues such as suicide, thus providing decision-support tools for policymakers to identify and evaluate interventions. While network science has served to examine systems maps in fields such as obesity, there is limited research at the intersection of suicidology and network science. In this paper, we apply network science to a large causal map of adverse childhood experiences (ACEs) and suicide to address this gap. The National Center for Injury Prevention and Control (NCIPC) within the Centers for Disease Control and Prevention recently created a causal map that encapsulates ACEs and adolescent suicide in 361 concept nodes and 946 directed relationships. In this study, we examine this map and three similar models through three related questions: (Q1) how do existing network-based models of suicide differ in terms of node- and network-level characteristics? (Q2) Using the NCIPC model as a unifying framework, how do current suicide intervention strategies align with prevailing theories of suicide? (Q3) How can the use of network science on the NCIPC model guide suicide interventions?","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The latent cognitive structures of social networks 社交网络的潜在认知结构
IF 1.7 Q2 Social Sciences Pub Date : 2024-04-25 DOI: 10.1017/nws.2024.7
Izabel Aguiar, Johan Ugander
When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question, Can we identify people who share the same heuristics? In this work, we propose a method for identifying cognitive structure across multiple network perceptions, analogous to how community detection aims to identify social structure in a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory of social cognition by identifying individuals who share relational schema. In addition to modeling cognitively independent, dependent, and redundant networks, we propose a specific model instance and related statistical test for testing when there is social-cognitive agreement in a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks.
当人们被要求回忆他们的社交网络时,理论和实证研究告诉我们,他们依赖于捷径或启发式方法。认知社会结构(CSS)是多层社会网络,其中每一层都对应着个人对网络的认知。由于人们对同一网络有多种感知,因此 CSS 包含了有关这些启发式方法如何体现的丰富信息,从而引发了这样一个问题:我们能否识别出拥有相同启发式方法的人?在这项工作中,我们提出了一种方法来识别多个网络感知中的认知结构,类似于社区检测旨在识别网络中的社会结构。为了同时对潜在社会结构和认知结构进行建模,我们将 CSS 作为三维张量进行研究,采用低秩非负塔克分解(NNTuck)来近似 CSS--这一过程与从此类数据中估计多层随机块模型(SBM)密切相关。我们建议将由此产生的潜在认知空间作为社会认知社会学理论的操作化,识别出共享关系图式的个体。除了对认知独立网络、依赖网络和冗余网络进行建模外,我们还提出了一个特定的模型实例和相关的统计检验,用于测试网络中是否存在社会认知一致:即社会结构和认知结构是否等同。我们使用我们的方法分析了四种不同的 CSS,并深入探讨了这些网络的潜在认知结构。
{"title":"The latent cognitive structures of social networks","authors":"Izabel Aguiar, Johan Ugander","doi":"10.1017/nws.2024.7","DOIUrl":"https://doi.org/10.1017/nws.2024.7","url":null,"abstract":"When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question, <jats:italic>Can we identify people who share the same heuristics?</jats:italic> In this work, we propose a method for identifying <jats:italic>cognitive structure</jats:italic> across multiple network perceptions, analogous to how community detection aims to identify <jats:italic>social structure</jats:italic> in a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory of <jats:italic>social cognition</jats:italic> by identifying individuals who share <jats:italic>relational schema</jats:italic>. In addition to modeling cognitively <jats:italic>independent</jats:italic>, <jats:italic>dependent</jats:italic>, and <jats:italic>redundant</jats:italic> networks, we propose a specific model instance and related statistical test for testing when there is <jats:italic>social-cognitive agreement</jats:italic> in a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algorithmic aspects of temporal betweenness 时间间隔的算法方面
IF 1.7 Q2 Social Sciences Pub Date : 2024-04-12 DOI: 10.1017/nws.2024.5
Sebastian Buß, Hendrik Molter, Rolf Niedermeier, Maciej Rymar
The betweenness centrality of a graph vertex measures how often this vertex is visited on shortest paths between other vertices of the graph. In the analysis of many real-world graphs or networks, the betweenness centrality of a vertex is used as an indicator for its relative importance in the network. In particular, it is among the most popular tools in social network analysis. In recent years, a growing number of real-world networks have been modeled as temporal graphs instead of conventional (static) graphs. In a temporal graph, we have a fixed set of vertices and there is a finite discrete set of time steps, and every edge might be present only at some time steps. While shortest paths are straightforward to define in static graphs, temporal paths can be considered “optimal” with respect to many different criteria, including length, arrival time, and overall travel time (shortest, foremost, and fastest paths). This leads to different concepts of temporal betweenness centrality, posing new challenges on the algorithmic side. We provide a systematic study of temporal betweenness variants based on various concepts of optimal temporal paths. Computing the betweenness centrality for vertices in a graph is closely related to counting the number of optimal paths between vertex pairs. While in static graphs computing the number of shortest paths is easily doable in polynomial time, we show that counting foremost and fastest paths is computationally intractable (#P-hard), and hence, the computation of the corresponding temporal betweenness values is intractable as well. For shortest paths and two selected special cases of foremost paths, we devise polynomial-time algorithms for temporal betweenness computation. Moreover, we also explore the distinction between strict (ascending time labels) and non-strict (non-descending time labels) time labels in temporal paths. In our experiments with established real-world temporal networks, we demonstrate the practical effectiveness of our algorithms, compare the various betweenness concepts, and derive recommendations on their practical use.
图顶点的顶点间中心度(betweenness centrality)衡量的是该顶点在图中其他顶点之间的最短路径上被访问的频率。在对许多现实世界的图或网络进行分析时,顶点的间度中心性被用作衡量顶点在网络中相对重要性的指标。特别是,它是社交网络分析中最常用的工具之一。近年来,越来越多的现实世界网络被建模为时间图,而不是传统的(静态)图。在时序图中,我们有一组固定的顶点,有一组有限的离散时间步长,每条边可能只在某些时间步长出现。在静态图中,最短路径是可以直接定义的,而在时间图中,可以根据许多不同的标准(包括长度、到达时间和总行程时间(最短路径、最长路径和最快路径))将时间路径视为 "最优 "路径。这就产生了不同的时间间中心度概念,给算法方面带来了新的挑战。我们根据最优时间路径的不同概念,对时间间性变体进行了系统研究。计算图中顶点的中心度与计算顶点对之间的最优路径数量密切相关。在静态图中,计算最短路径的数量很容易在多项式时间内完成,而我们的研究表明,计算最短路径和最快路径在计算上是难以实现的(#P-hard),因此计算相应的时空中心度值也是难以实现的。对于最短路径和最前路径的两个选定特例,我们设计了多项式时间算法来计算时间间隔。此外,我们还探讨了时间路径中严格(升序时间标签)和非严格(非降序时间标签)时间标签之间的区别。在对已建立的真实世界时态网络进行的实验中,我们证明了算法的实际有效性,比较了各种时态间性概念,并就其实际应用提出了建议。
{"title":"Algorithmic aspects of temporal betweenness","authors":"Sebastian Buß, Hendrik Molter, Rolf Niedermeier, Maciej Rymar","doi":"10.1017/nws.2024.5","DOIUrl":"https://doi.org/10.1017/nws.2024.5","url":null,"abstract":"The <jats:italic>betweenness centrality</jats:italic> of a graph vertex measures how often this vertex is visited on shortest paths between other vertices of the graph. In the analysis of many real-world graphs or networks, the betweenness centrality of a vertex is used as an indicator for its relative importance in the network. In particular, it is among the most popular tools in social network analysis. In recent years, a growing number of real-world networks have been modeled as <jats:italic>temporal graphs</jats:italic> instead of conventional (static) graphs. In a temporal graph, we have a fixed set of vertices and there is a finite discrete set of time steps, and every edge might be present only at some time steps. While shortest paths are straightforward to define in static graphs, temporal paths can be considered “optimal” with respect to many different criteria, including length, arrival time, and overall travel time (shortest, foremost, and fastest paths). This leads to different concepts of <jats:italic>temporal betweenness centrality</jats:italic>, posing new challenges on the algorithmic side. We provide a systematic study of temporal betweenness variants based on various concepts of optimal temporal paths. Computing the betweenness centrality for vertices in a graph is closely related to counting the number of optimal paths between vertex pairs. While in static graphs computing the number of shortest paths is easily doable in polynomial time, we show that counting foremost and fastest paths is computationally intractable (#P-hard), and hence, the computation of the corresponding temporal betweenness values is intractable as well. For shortest paths and two selected special cases of foremost paths, we devise polynomial-time algorithms for temporal betweenness computation. Moreover, we also explore the distinction between strict (ascending time labels) and non-strict (non-descending time labels) time labels in temporal paths. In our experiments with established real-world temporal networks, we demonstrate the practical effectiveness of our algorithms, compare the various betweenness concepts, and derive recommendations on their practical use.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When can networks be inferred from observed groups? 何时可以从观察到的群体中推断出网络?
IF 1.7 Q2 Social Sciences Pub Date : 2024-04-12 DOI: 10.1017/nws.2024.6
Zachary P. Neal
Collecting network data directly from network members can be challenging. One alternative involves inferring a network from observed groups, for example, inferring a network of scientific collaboration from researchers’ observed paper authorships. In this paper, I explore when an unobserved undirected network of interest can accurately be inferred from observed groups. The analysis uses simulations to experimentally manipulate the structure of the unobserved network to be inferred, the number of groups observed, the extent to which the observed groups correspond to cliques in the unobserved network, and the method used to draw inferences. I find that when a small number of groups are observed, an unobserved network can be accurately inferred using a simple unweighted two-mode projection, provided that each group’s membership closely corresponds to a clique in the unobserved network. In contrast, when a large number of groups are observed, an unobserved network can be accurately inferred using a statistical backbone extraction model, even if the groups’ memberships are mostly random. These findings offer guidance for researchers seeking to indirectly measure a network of interest using observations of groups.
直接从网络成员那里收集网络数据具有挑战性。一种替代方法是通过观察到的群体推断网络,例如,通过观察到的研究人员的论文作者推断科学合作网络。在本文中,我探讨了何时可以从观察到的群体中准确推断出一个未观察到的无向网络。分析采用模拟实验的方法,通过实验来操纵待推断的未观察网络的结构、观察到的群体数量、观察到的群体与未观察网络中的小团体的对应程度,以及推断所使用的方法。我发现,当观察到的群体数量较少时,只要每个群体的成员资格与未观察到的网络中的一个小群紧密对应,就可以使用简单的非加权双模式投影准确推断出未观察到的网络。相反,当观察到大量群体时,即使群体的成员资格大多是随机的,也可以使用统计骨干提取模型准确推断出未观察到的网络。这些发现为研究人员利用对群体的观察来间接测量感兴趣的网络提供了指导。
{"title":"When can networks be inferred from observed groups?","authors":"Zachary P. Neal","doi":"10.1017/nws.2024.6","DOIUrl":"https://doi.org/10.1017/nws.2024.6","url":null,"abstract":"Collecting network data directly from network members can be challenging. One alternative involves inferring a network from observed groups, for example, inferring a network of scientific collaboration from researchers’ observed paper authorships. In this paper, I explore when an unobserved undirected network of interest can accurately be inferred from observed groups. The analysis uses simulations to experimentally manipulate the structure of the unobserved network to be inferred, the number of groups observed, the extent to which the observed groups correspond to cliques in the unobserved network, and the method used to draw inferences. I find that when a small number of groups are observed, an unobserved network can be accurately inferred using a simple unweighted two-mode projection, provided that each group’s membership closely corresponds to a clique in the unobserved network. In contrast, when a large number of groups are observed, an unobserved network can be accurately inferred using a statistical backbone extraction model, even if the groups’ memberships are mostly random. These findings offer guidance for researchers seeking to indirectly measure a network of interest using observations of groups.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating preferential attachment graphs via a Pólya urn with expanding colors 通过具有扩展颜色的波利亚瓮生成优先附着图
IF 1.7 Q2 Social Sciences Pub Date : 2024-04-08 DOI: 10.1017/nws.2024.3
Somya Singh, Fady Alajaji, Bahman Gharesifard
We introduce a novel preferential attachment model using the draw variables of a modified Pólya urn with an expanding number of colors, notably capable of modeling influential opinions (in terms of vertices of high degree) as the graph evolves. Similar to the Barabási-Albert model, the generated graph grows in size by one vertex at each time instance; in contrast however, each vertex of the graph is uniquely characterized by a color, which is represented by a ball color in the Pólya urn. More specifically at each time step, we draw a ball from the urn and return it to the urn along with a number of reinforcing balls of the same color; we also add another ball of a new color to the urn. We then construct an edge between the new vertex (corresponding to the new color) and the existing vertex whose color ball is drawn. Using color-coded vertices in conjunction with the time-varying reinforcing parameter allows for vertices added (born) later in the process to potentially attain a high degree in a way that is not captured in the Barabási-Albert model. We study the degree count of the vertices by analyzing the draw vectors of the underlying stochastic process. In particular, we establish the probability distribution of the random variable counting the number of draws of a given color which determines the degree of the vertex corresponding to that color in the graph. We further provide simulation results presenting a comparison between our model and the Barabási-Albert network.
我们介绍了一种新颖的优先依附模型,该模型使用了颜色数量不断增加的改良波利亚瓮的绘制变量,随着图的演化,该模型能够对有影响力的意见(以高度数顶点为单位)进行建模。与巴拉巴西-阿尔伯特模型类似,生成的图在每个时间实例中都会增加一个顶点;但与此不同的是,图中的每个顶点都有一种颜色,这种颜色由波利亚瓮中的球色表示。更具体地说,在每个时间步长内,我们都会从瓮中抽出一个球,并将其与若干相同颜色的强化球一起放回瓮中;我们还会向瓮中添加另一个新颜色的球。然后,我们会在新顶点(对应新颜色)和现有顶点(其颜色球已被提取)之间构建一条边。将颜色编码顶点与随时间变化的强化参数结合使用,可以使在此过程中较晚添加(诞生)的顶点有可能达到较高的度数,而这是巴拉巴西-阿尔伯特模型无法捕捉到的。我们通过分析基本随机过程的抽取向量来研究顶点的度数。特别是,我们建立了随机变量的概率分布,该随机变量计算特定颜色的抽签次数,而抽签次数决定了图中与该颜色对应的顶点的度数。我们还提供了模拟结果,对我们的模型和巴拉巴西-阿尔伯特网络进行了比较。
{"title":"Generating preferential attachment graphs via a Pólya urn with expanding colors","authors":"Somya Singh, Fady Alajaji, Bahman Gharesifard","doi":"10.1017/nws.2024.3","DOIUrl":"https://doi.org/10.1017/nws.2024.3","url":null,"abstract":"We introduce a novel preferential attachment model using the draw variables of a modified Pólya urn with an expanding number of colors, notably capable of modeling influential opinions (in terms of vertices of high degree) as the graph evolves. Similar to the Barabási-Albert model, the generated graph grows in size by one vertex at each time instance; in contrast however, each vertex of the graph is uniquely characterized by a color, which is represented by a ball color in the Pólya urn. More specifically at each time step, we draw a ball from the urn and return it to the urn along with a number of reinforcing balls of the same color; we also add another ball of a new color to the urn. We then construct an edge between the new vertex (corresponding to the new color) and the existing vertex whose color ball is drawn. Using color-coded vertices in conjunction with the time-varying reinforcing parameter allows for vertices added (born) later in the process to potentially attain a high degree in a way that is not captured in the Barabási-Albert model. We study the degree count of the vertices by analyzing the draw vectors of the underlying stochastic process. In particular, we establish the probability distribution of the random variable counting the number of draws of a given color which determines the degree of the vertex corresponding to that color in the graph. We further provide simulation results presenting a comparison between our model and the Barabási-Albert network.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated detection of edge clusters via an overfitted mixture prior – CORRIGENDUM 通过过度拟合混合先验自动检测边缘聚类 - CORRIGENDUM
IF 1.7 Q2 Social Sciences Pub Date : 2024-03-21 DOI: 10.1017/nws.2024.4
H. T. D. Pham, Daniel K. Sewell
{"title":"Automated detection of edge clusters via an overfitted mixture prior – CORRIGENDUM","authors":"H. T. D. Pham, Daniel K. Sewell","doi":"10.1017/nws.2024.4","DOIUrl":"https://doi.org/10.1017/nws.2024.4","url":null,"abstract":"","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140222218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalized hypothesis test for community structure in networks 网络中群落结构的广义假设检验
IF 1.7 Q2 Social Sciences Pub Date : 2024-03-11 DOI: 10.1017/nws.2024.1
Eric Yanchenko, Srijan Sengupta

Researchers theorize that many real-world networks exhibit community structure where within-community edges are more likely than between-community edges. While numerous methods exist to cluster nodes into different communities, less work has addressed this question: given some network, does it exhibit statistically meaningful community structure? We answer this question in a principled manner by framing it as a statistical hypothesis test in terms of a general and model-agnostic community structure parameter. Leveraging this parameter, we propose a simple and interpretable test statistic used to formulate two separate hypothesis testing frameworks. The first is an asymptotic test against a baseline value of the parameter while the second tests against a baseline model using bootstrap-based thresholds. We prove theoretical properties of these tests and demonstrate how the proposed method yields rich insights into real-world datasets.

研究人员认为,现实世界中的许多网络都呈现出社群结构,其中社群内边缘比社群间边缘更有可能出现。虽然有许多方法可以将节点聚类到不同的社区中,但较少有人关注这个问题:给定某个网络,它是否表现出有统计意义的社区结构?我们以一种原则性的方式回答了这一问题,即用一个通用的、与模型无关的社群结构参数对其进行统计假设检验。利用这个参数,我们提出了一个简单、可解释的检验统计量,用于制定两个独立的假设检验框架。第一个是针对参数基线值的渐近检验,第二个是利用基于引导的阈值针对基线模型的检验。我们证明了这些检验的理论属性,并展示了所提出的方法如何对现实世界的数据集产生丰富的洞察力。
{"title":"A generalized hypothesis test for community structure in networks","authors":"Eric Yanchenko, Srijan Sengupta","doi":"10.1017/nws.2024.1","DOIUrl":"https://doi.org/10.1017/nws.2024.1","url":null,"abstract":"<p>Researchers theorize that many real-world networks exhibit community structure where within-community edges are more likely than between-community edges. While numerous methods exist to cluster nodes into different communities, less work has addressed this question: given some network, does it exhibit <span>statistically meaningful</span> community structure? We answer this question in a principled manner by framing it as a statistical hypothesis test in terms of a general and model-agnostic community structure parameter. Leveraging this parameter, we propose a simple and interpretable test statistic used to formulate two separate hypothesis testing frameworks. The first is an asymptotic test against a baseline value of the parameter while the second tests against a baseline model using bootstrap-based thresholds. We prove theoretical properties of these tests and demonstrate how the proposed method yields rich insights into real-world datasets.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methodological moderators of average outdegree centrality: A meta-analysis of child and adolescent friendship networks 平均非度中心性的方法调节因素:儿童和青少年友谊网络的元分析
IF 1.7 Q2 Social Sciences Pub Date : 2024-03-08 DOI: 10.1017/nws.2024.2
Jennifer Watling Neal
Empirical articles vary considerably in how they measure child and adolescent friendship networks. This meta-analysis examines four methodological moderators of children’s and adolescents’ average outdegree centrality in friendship networks: boundary specification, operational definition of friendship, unlimited vs. fixed choice design, and roster vs. free recall design. Specifically, multi-level random effects models were conducted using 261 average outdegree centrality estimates from 71 English-language peer-reviewed articles and 55 unique datasets. There were no significant differences in average outdegree centrality for child and adolescent friendship networks bounded at the classroom, grade, and school-levels. Using a name generator focused on best/close friends yielded significantly lower average outdegree centrality estimates than using a name generator focused on friends. Fixed choice designs with under 10 nominations were associated with significantly lower estimates of average outdegree centrality while fixed choice designs with 10 or more nominations were associated with significantly higher estimates of average outdegree centrality than unlimited choice designs. Free recall designs were associated with significantly lower estimates of average outdegree centrality than roster designs. Results are discussed within the context of their implications for the future measurement of child and adolescent friendship networks.
经验性文章在衡量儿童和青少年友谊网络的方法上存在很大差异。本荟萃分析研究了儿童和青少年在友谊网络中的平均离度中心度的四种方法调节因素:边界规范、友谊的操作定义、无限制设计与固定选择设计、名册设计与自由回忆设计。具体来说,我们使用 71 篇英文同行评议文章和 55 个独特数据集中的 261 个平均离度中心度估计值建立了多层次随机效应模型。以班级、年级和学校为界限的儿童和青少年友谊网络的平均离度中心度没有明显差异。使用以最好/最亲密朋友为重点的名字生成器估计的平均离散度中心度明显低于使用以朋友为重点的名字生成器估计的平均离散度中心度。提名人数少于 10 人的固定选择设计的平均离散度中心度估计值明显较低,而提名人数达到或超过 10 人的固定选择设计的平均离散度中心度估计值则明显高于无限选择设计的平均离散度中心度估计值。自由回忆设计的平均离散度中心性估计值明显低于名册设计。我们将结合这些结果对未来儿童和青少年友谊网络测量的影响进行讨论。
{"title":"Methodological moderators of average outdegree centrality: A meta-analysis of child and adolescent friendship networks","authors":"Jennifer Watling Neal","doi":"10.1017/nws.2024.2","DOIUrl":"https://doi.org/10.1017/nws.2024.2","url":null,"abstract":"Empirical articles vary considerably in how they measure child and adolescent friendship networks. This meta-analysis examines four methodological moderators of children’s and adolescents’ average outdegree centrality in friendship networks: boundary specification, operational definition of friendship, unlimited vs. fixed choice design, and roster vs. free recall design. Specifically, multi-level random effects models were conducted using 261 average outdegree centrality estimates from 71 English-language peer-reviewed articles and 55 unique datasets. There were no significant differences in average outdegree centrality for child and adolescent friendship networks bounded at the classroom, grade, and school-levels. Using a name generator focused on best/close friends yielded significantly lower average outdegree centrality estimates than using a name generator focused on friends. Fixed choice designs with under 10 nominations were associated with significantly lower estimates of average outdegree centrality while fixed choice designs with 10 or more nominations were associated with significantly higher estimates of average outdegree centrality than unlimited choice designs. Free recall designs were associated with significantly lower estimates of average outdegree centrality than roster designs. Results are discussed within the context of their implications for the future measurement of child and adolescent friendship networks.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated detection of edge clusters via an overfitted mixture prior 通过过度拟合混合先验自动检测边缘集群
IF 1.7 Q2 Social Sciences Pub Date : 2024-01-19 DOI: 10.1017/nws.2023.22
Hanh T. D. Pham, Daniel K. Sewell
Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmic, with the exception of the latent space edge clustering (LSEC) model proposed by Sewell (Journal of Computational and Graphical Statistics, 30(2), 390–405, 2021). LSEC was shown to have good performance in simulation and real-life data analysis, but fitting this model requires prior knowledge of the number of clusters and latent dimensions, which are often unknown to researchers. Within a Bayesian framework, we propose an extension to the LSEC model using a sparse finite mixture prior that supports automated selection of the number of clusters. We refer to our proposed approach as the automated LSEC or aLSEC. We develop a variational Bayes generalized expectation-maximization approach and a Hamiltonian Monte Carlo-within Gibbs algorithm for estimation. Our simulation study showed that aLSEC reduced run time by 10 to over 100 times compared to LSEC. Like LSEC, aLSEC maintains a computational cost that grows linearly with the number of actors in a network, making it scalable to large sparse networks. We developed the R package aLSEC which implements the proposed methodology.
大多数社群检测方法都侧重于对网络中具有共同特征的参与者进行聚类。然而,在许多实际应用中,边缘聚类提供了一种更直观的了解网络结构的方法。在现有的网络边缘聚类方法中,除了 Sewell 提出的潜空间边缘聚类(LSEC)模型(《计算和图形统计期刊》,30(2), 390-405, 2021 年)之外,大多数方法都是算法性的。在模拟和现实数据分析中,LSEC 被证明具有良好的性能,但拟合该模型需要事先了解聚类数量和潜在维度,而研究人员往往不知道这些信息。在贝叶斯框架内,我们提出了一种使用稀疏有限混合物先验的 LSEC 模型扩展方法,它支持自动选择聚类数量。我们将所提出的方法称为自动 LSEC 或 aLSEC。我们开发了一种变分贝叶斯广义期望最大化方法和一种含吉布斯算法的哈密尔顿蒙特卡洛估计方法。我们的模拟研究表明,与 LSEC 相比,aLSEC 的运行时间缩短了 10 到 100 多倍。与 LSEC 一样,aLSEC 的计算成本与网络中参与者的数量呈线性增长,因此可扩展至大型稀疏网络。我们开发的 R 软件包 aLSEC 实现了所提出的方法。
{"title":"Automated detection of edge clusters via an overfitted mixture prior","authors":"Hanh T. D. Pham, Daniel K. Sewell","doi":"10.1017/nws.2023.22","DOIUrl":"https://doi.org/10.1017/nws.2023.22","url":null,"abstract":"Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmic, with the exception of the latent space edge clustering (LSEC) model proposed by Sewell (<jats:italic>Journal of Computational and Graphical Statistics, 30</jats:italic>(2), 390–405, 2021). LSEC was shown to have good performance in simulation and real-life data analysis, but fitting this model requires prior knowledge of the number of clusters and latent dimensions, which are often unknown to researchers. Within a Bayesian framework, we propose an extension to the LSEC model using a sparse finite mixture prior that supports automated selection of the number of clusters. We refer to our proposed approach as the automated LSEC or aLSEC. We develop a variational Bayes generalized expectation-maximization approach and a Hamiltonian Monte Carlo-within Gibbs algorithm for estimation. Our simulation study showed that aLSEC reduced run time by 10 to over 100 times compared to LSEC. Like LSEC, aLSEC maintains a computational cost that grows linearly with the number of actors in a network, making it scalable to large sparse networks. We developed the R package aLSEC which implements the proposed methodology.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Audience selection for maximizing social influence 选择受众,实现社会影响力最大化
IF 1.7 Q2 Social Sciences Pub Date : 2024-01-12 DOI: 10.1017/nws.2023.23
Balázs R. Sziklai, Balázs Lengyel
Viral marketing campaigns target primarily those individuals who are central in social networks and hence have social influence. Marketing events, however, may attract diverse audience. Despite the importance of event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and compared based on their social influence. A typical application of Audience selection is choosing locations for a series of marketing events. The Audience selection problem is different from the well-known Influence Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a systemic test for ranking influence measures in the Audience Selection problem based on node sampling and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion model on two online social networks, we evaluate eight network measures of social influence. We demonstrate that the statistical assessment of these influence measures is remarkably different in the Audience Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the algorithm’s top choices exclusively.
病毒式营销活动的主要目标群体是社交网络中的核心人物,因此具有社会影响力。然而,营销活动可能会吸引不同的受众。尽管事件营销非常重要,但人们对异质目标群体的影响还不甚了解。在本文中,我们定义了 "受众选择"(Audience Selection,AS)问题,在这个问题中,需要根据不同代理的社会影响力对其进行评估和比较。受众选择的一个典型应用是为一系列营销活动选择地点。受众选择问题与著名的影响力最大化(IM)问题有两点不同。首先,它处理的是集合而不是节点。其次,集合是多样化的,由有影响力的代理和普通代理混合组成。因此,受众选择也需要评估普通代理的贡献,而 IM 的目的只是找到顶级传播者。我们基于节点抽样和一种新颖的统计方法--排名差异总和,为受众选择问题中的排名影响度量提供了一个系统测试。我们在两个在线社交网络上使用线性阈值扩散模型,评估了八种社会影响力网络测量方法。我们证明,在受众选择问题中,当存在低排名个体时,这些影响度量的统计评估与在即时通讯问题中,当我们只关注算法的首选时,这些影响度量的统计评估明显不同。
{"title":"Audience selection for maximizing social influence","authors":"Balázs R. Sziklai, Balázs Lengyel","doi":"10.1017/nws.2023.23","DOIUrl":"https://doi.org/10.1017/nws.2023.23","url":null,"abstract":"Viral marketing campaigns target primarily those individuals who are central in social networks and hence have social influence. Marketing events, however, may attract diverse audience. Despite the importance of event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and compared based on their social influence. A typical application of Audience selection is choosing locations for a series of marketing events. The Audience selection problem is different from the well-known Influence Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a systemic test for ranking influence measures in the Audience Selection problem based on node sampling and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion model on two online social networks, we evaluate eight network measures of social influence. We demonstrate that the statistical assessment of these influence measures is remarkably different in the Audience Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the algorithm’s top choices exclusively.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1