Non-overlapping High-accuracy Parallel Closure for Compact Schemes: Application in Multiphysics and Complex Geometry

Pub Date : 2023-01-17 DOI:10.1145/3580005
P. Sundaram, A. Sengupta, V. K. Suman, T. Sengupta
{"title":"Non-overlapping High-accuracy Parallel Closure for Compact Schemes: Application in Multiphysics and Complex Geometry","authors":"P. Sundaram, A. Sengupta, V. K. Suman, T. Sengupta","doi":"10.1145/3580005","DOIUrl":null,"url":null,"abstract":"Compact schemes are often preferred in performing scientific computing for their superior spectral resolution. Error-free parallelization of a compact scheme is a challenging task due to the requirement of additional closures at the inter-processor boundaries. Here, sources of the error due to sub-domain boundary closures for the compact schemes are analyzed with global spectral analysis. A high-accuracy parallel computing strategy devised in “ A high-accuracy preserving parallel algorithm for compact schemes for DNS. ACM Trans. Parallel Comput. 7, 4, 1-32 (2020)” systematically eliminates error due to parallelization and does not require overlapping points at the sub-domain boundaries. This closure is applicable for any compact scheme and is termed here as non-overlapping high-accuracy parallel (NOHAP) sub-domain boundary closure. In the present work, the advantages of the NOHAP closure are shown with the model convection equation and by solving the compressible Navier–Stokes equation for three-dimensional Rayleigh–Taylor instability simulations involving multiphysics dynamics and high Reynolds number flow past a natural laminar flow airfoil using a body-conforming curvilinear coordinate system. Linear scalability of the NOHAP closure is shown for the large-scale simulations using up to 19,200 processors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Compact schemes are often preferred in performing scientific computing for their superior spectral resolution. Error-free parallelization of a compact scheme is a challenging task due to the requirement of additional closures at the inter-processor boundaries. Here, sources of the error due to sub-domain boundary closures for the compact schemes are analyzed with global spectral analysis. A high-accuracy parallel computing strategy devised in “ A high-accuracy preserving parallel algorithm for compact schemes for DNS. ACM Trans. Parallel Comput. 7, 4, 1-32 (2020)” systematically eliminates error due to parallelization and does not require overlapping points at the sub-domain boundaries. This closure is applicable for any compact scheme and is termed here as non-overlapping high-accuracy parallel (NOHAP) sub-domain boundary closure. In the present work, the advantages of the NOHAP closure are shown with the model convection equation and by solving the compressible Navier–Stokes equation for three-dimensional Rayleigh–Taylor instability simulations involving multiphysics dynamics and high Reynolds number flow past a natural laminar flow airfoil using a body-conforming curvilinear coordinate system. Linear scalability of the NOHAP closure is shown for the large-scale simulations using up to 19,200 processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
紧格式的非重叠高精度并行闭包:在多物理场和复杂几何中的应用
紧凑型方案由于其优越的光谱分辨率,在进行科学计算时通常是首选方案。紧凑方案的无错误并行化是一项具有挑战性的任务,因为在处理器间边界需要额外的闭包。在这里,通过全局谱分析来分析由于紧致格式的子域边界闭合引起的误差源。“用于DNS的紧凑方案的高精度保持并行算法。ACM Trans.parallel Comput.7,4,1-32(2020)”中设计的高精度并行计算策略系统地消除了由于并行化而产生的错误,并且不需要子域边界处的重叠点。这种闭包适用于任何紧凑格式,在这里被称为非重叠高精度并行(NOHAP)子域边界闭包。在目前的工作中,NOHAP闭合的优势通过模型对流方程和求解三维瑞利-泰勒不稳定性模拟的可压缩Navier–Stokes方程来显示,该不稳定性模拟涉及多物理动力学和高雷诺数流动通过自然层流翼型,使用符合体的曲线坐标系。对于使用多达19200个处理器的大规模模拟,显示了NOHAP闭包的线性可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1