Effect of roll press on consolidation and electric/ionic-path formation of electrodes for all-solid-state battery

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2021-12-01 DOI:10.1016/j.powera.2021.100078
Maria Yokota, Takuro Matsunaga
{"title":"Effect of roll press on consolidation and electric/ionic-path formation of electrodes for all-solid-state battery","authors":"Maria Yokota,&nbsp;Takuro Matsunaga","doi":"10.1016/j.powera.2021.100078","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated unpressed and pressed electrodes with the synchrotron radiation X-ray computed laminography (CL) technique to clarify the relationship between the packing structure formation of an electrode processed with a roll press and the performance of all-solid-state batteries. Additionally, we evaluated the length and thickness of percolation paths constructed by the electrode particles using the 3-dimensional structure obtained by the X-ray CL measurement. The smallest packing fraction was in the cathode layers in both the pressed and unpressed electrodes. The cathode packing fraction had a non-uniform distribution shape as a function of the layer thickness. A similar distribution shape was maintained after pressing, except near the surface in contact with the pressing roller. Pressing caused the packing fraction of the cathode layer to become much larger than the unpressed one, especially near the surface where it significantly increased. The thickness of the percolation paths in the cathode layer also increased after pressing. Furthermore, we discovered that the cathode local path thickness, measured by using regions segmented by packing fraction values, had a linear relationship with the packing fraction. Consequently, the performance bottle neck is caused by the local layer that has the smallest packing fraction.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000330/pdfft?md5=7087022575df98d5ed063431e3b05558&pid=1-s2.0-S2666248521000330-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

This study investigated unpressed and pressed electrodes with the synchrotron radiation X-ray computed laminography (CL) technique to clarify the relationship between the packing structure formation of an electrode processed with a roll press and the performance of all-solid-state batteries. Additionally, we evaluated the length and thickness of percolation paths constructed by the electrode particles using the 3-dimensional structure obtained by the X-ray CL measurement. The smallest packing fraction was in the cathode layers in both the pressed and unpressed electrodes. The cathode packing fraction had a non-uniform distribution shape as a function of the layer thickness. A similar distribution shape was maintained after pressing, except near the surface in contact with the pressing roller. Pressing caused the packing fraction of the cathode layer to become much larger than the unpressed one, especially near the surface where it significantly increased. The thickness of the percolation paths in the cathode layer also increased after pressing. Furthermore, we discovered that the cathode local path thickness, measured by using regions segmented by packing fraction values, had a linear relationship with the packing fraction. Consequently, the performance bottle neck is caused by the local layer that has the smallest packing fraction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辊压对全固态电池电极固结和电/离子路径形成的影响
本研究利用同步辐射x射线计算机层析(CL)技术对未压电极和压电极进行了研究,以阐明辊压处理电极的填料结构形成与全固态电池性能之间的关系。此外,我们利用x射线CL测量获得的三维结构评估了电极颗粒构建的渗透路径的长度和厚度。在受压电极和未受压电极的阴极层中,填充率最小。阴极填料分数随层厚呈非均匀分布。除与压辊接触的表面附近外,压后均保持相似的分布形状。压紧导致阴极层的填充物比例比未压紧的填充物比例大得多,特别是在表面附近填充物比例显著增加。压实后阴极层中渗透路径的厚度也有所增加。此外,我们发现阴极局部路径厚度(用填充分数值分割的区域测量)与填充分数呈线性关系。因此,性能瓶颈是由具有最小填充分数的局部层引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1