Bias detection by using name disparity tables across protected groups

Elhanan Mishraky, Aviv Ben Arie, Yair Horesh, Shir Meir Lador
{"title":"Bias detection by using name disparity tables across protected groups","authors":"Elhanan Mishraky,&nbsp;Aviv Ben Arie,&nbsp;Yair Horesh,&nbsp;Shir Meir Lador","doi":"10.1016/j.jrt.2021.100020","DOIUrl":null,"url":null,"abstract":"<div><p>As AI-based models take an increasingly central role in our lives, so does the concern for fairness. In recent years, mounting evidence reveals how vulnerable AI models are to bias and the challenges involved in detection and mitigation. Our contribution is three-fold. Firstly, we gather name disparity tables across protected groups, allowing us to estimate sensitive attributes (gender, race). Using these estimates, we compute bias metrics given a classification model’s predictions. We leverage only names/zip codes; hence, our method is model and feature agnostic. Secondly, we offer an open-source Python package that produces a bias detection report based on our method. Finally, we demonstrate that names of older individuals are better predictors of race and gender and that double surnames are a reasonable predictor of gender. We tested our method on publicly available datasets (US Congress) and classifiers (COMPAS) and found it to be consistent with them.</p></div>","PeriodicalId":73937,"journal":{"name":"Journal of responsible technology","volume":"9 ","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666659621000135/pdfft?md5=8041820faa51f0fd3959ba4a94d4edae&pid=1-s2.0-S2666659621000135-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of responsible technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666659621000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As AI-based models take an increasingly central role in our lives, so does the concern for fairness. In recent years, mounting evidence reveals how vulnerable AI models are to bias and the challenges involved in detection and mitigation. Our contribution is three-fold. Firstly, we gather name disparity tables across protected groups, allowing us to estimate sensitive attributes (gender, race). Using these estimates, we compute bias metrics given a classification model’s predictions. We leverage only names/zip codes; hence, our method is model and feature agnostic. Secondly, we offer an open-source Python package that produces a bias detection report based on our method. Finally, we demonstrate that names of older individuals are better predictors of race and gender and that double surnames are a reasonable predictor of gender. We tested our method on publicly available datasets (US Congress) and classifiers (COMPAS) and found it to be consistent with them.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨保护组使用名称差异表进行偏差检测
随着基于人工智能的模型在我们的生活中扮演越来越重要的角色,对公平的关注也越来越重要。近年来,越来越多的证据表明,人工智能模型是多么容易受到偏见的影响,以及在检测和缓解方面所面临的挑战。我们的贡献有三方面。首先,我们收集受保护群体的名字差异表,使我们能够估计敏感属性(性别、种族)。使用这些估计,我们计算偏差指标给定的分类模型的预测。我们只利用姓名/邮政编码;因此,我们的方法是模型和特征不可知的。其次,我们提供了一个开源的Python包,它可以根据我们的方法生成偏差检测报告。最后,我们证明,老年人的名字是更好的预测种族和性别,双姓是一个合理的预测性别。我们在公开可用的数据集(美国国会)和分类器(COMPAS)上测试了我们的方法,发现它与它们一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of responsible technology
Journal of responsible technology Information Systems, Artificial Intelligence, Human-Computer Interaction
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
168 days
期刊最新文献
Towards a critical recovery of liberatory PAR for food system transformations: Struggles and strategies in collaborating with radical and progressive food movements in EU-funded R&I projects Towards a research ethics of real-world experimentation with emerging technology Brave global spaces: Researching digital health and human rights through transnational participatory action research Start doing the right thing: Indicators for socially responsible start-ups and investors Virtual Social Labs – Requirements and Challenges for Effective Team Collaboration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1