{"title":"Self-assembly fabrication of lignin-derived carbon with dual heteroatoms doping for high-performance supercapacitor","authors":"Zehong Chen, Haihong Lai, Hao Zhuo, Yu Lin Zhong, Linxin Zhong, Xinwen Peng","doi":"10.1186/s42825-023-00122-w","DOIUrl":null,"url":null,"abstract":"<div><p>Renewable and low-cost biomass is an ideal sustainable alternative to petroleum-based resources, but producing biomass-based carbon electrode with high performances remains a challenge. Herein, we propose a facile self-assembly strategy to fabricate a biomass-derived N, S co-doping carbon electrode from lignosulfonate without any activation or template process. Taking advantage of the coordination between Fe ions and lignosulfonate, the resultant carbon exhibits a spherical structure with abundant graphitized nanosheets, leading to a high specific surface area with rational pore structure, which are beneficial to the electron/ion transport and storage. The high contents of doping N (8.47 wt%) and S (2.56 wt%) significantly boost the electrochemical performances. As a supercapacitor electrode, the carbon material displays high specific capacitance of 390 F g<sup>−1</sup>, excellent cycling stability and high energy density of 14.7 W h kg<sup>−1</sup> at a power density of 450 W kg<sup>−1</sup>. This study provides a potential strategy for synthesizing cost-effective heteroatom-doped carbon materials from biomass with abundant functional groups and heteroatom sources, such as chitosan, collagen, and gelatin.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-023-00122-w","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-023-00122-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Renewable and low-cost biomass is an ideal sustainable alternative to petroleum-based resources, but producing biomass-based carbon electrode with high performances remains a challenge. Herein, we propose a facile self-assembly strategy to fabricate a biomass-derived N, S co-doping carbon electrode from lignosulfonate without any activation or template process. Taking advantage of the coordination between Fe ions and lignosulfonate, the resultant carbon exhibits a spherical structure with abundant graphitized nanosheets, leading to a high specific surface area with rational pore structure, which are beneficial to the electron/ion transport and storage. The high contents of doping N (8.47 wt%) and S (2.56 wt%) significantly boost the electrochemical performances. As a supercapacitor electrode, the carbon material displays high specific capacitance of 390 F g−1, excellent cycling stability and high energy density of 14.7 W h kg−1 at a power density of 450 W kg−1. This study provides a potential strategy for synthesizing cost-effective heteroatom-doped carbon materials from biomass with abundant functional groups and heteroatom sources, such as chitosan, collagen, and gelatin.
可再生和低成本的生物质是石油基资源的理想可持续替代品,但生产高性能的生物质基碳电极仍然是一个挑战。在此,我们提出了一种简单的自组装策略,以木质素磺酸盐制备生物质来源的N, S共掺杂碳电极,无需任何活化或模板过程。利用铁离子与木质素磺酸盐之间的配位作用,合成的碳具有丰富的石墨化纳米片的球形结构,具有较高的比表面积和合理的孔结构,有利于电子/离子的传递和储存。高含量的N (8.47 wt%)和S (2.56 wt%)显著提高了电化学性能。作为超级电容器电极,碳材料具有390 F g−1的高比电容、优异的循环稳定性和在450 W kg−1的功率密度下14.7 W h kg−1的高能量密度。本研究为从具有丰富官能团和杂原子来源的生物质中合成具有成本效益的杂原子掺杂碳材料提供了一种潜在的策略,如壳聚糖、胶原蛋白和明胶。图形抽象