Optimization based Tuberculosis Image Segmentation by Ant Colony Heuristic Method

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Swarm Intelligence Research Pub Date : 2022-01-01 DOI:10.4018/ijsir.2022010113
{"title":"Optimization based Tuberculosis Image Segmentation by Ant Colony Heuristic Method","authors":"","doi":"10.4018/ijsir.2022010113","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) is a worldwide health crisis and is the second primary infectious disease that causes death next to human immunodeficiency virus. In this work, an attempt has been made to detect the presence of bacilli in sputum smears. The smear images recorded under standard image acquisition protocol are subjected to hybrid Ant Colony Optimization (ACO)-morphological based segmentation procedure. This method is able to retain the shape of bacilli in TB images. The segmented images are validated with ground truth using overlap, distance and probability-based measures. Significant shape-based features such as area, perimeter, compactness, shape factor and tortuosity are extracted from the segmented images. It is observed that this method preserves more edges, detects the presence of bacilli and facilitates direct segmentation with reduced number of redundant searches to generate edges. Thus this hybrid segmentation technique aid in the diagnostic relevance of TB images in identifying the objects present in them.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.2022010113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB) is a worldwide health crisis and is the second primary infectious disease that causes death next to human immunodeficiency virus. In this work, an attempt has been made to detect the presence of bacilli in sputum smears. The smear images recorded under standard image acquisition protocol are subjected to hybrid Ant Colony Optimization (ACO)-morphological based segmentation procedure. This method is able to retain the shape of bacilli in TB images. The segmented images are validated with ground truth using overlap, distance and probability-based measures. Significant shape-based features such as area, perimeter, compactness, shape factor and tortuosity are extracted from the segmented images. It is observed that this method preserves more edges, detects the presence of bacilli and facilitates direct segmentation with reduced number of redundant searches to generate edges. Thus this hybrid segmentation technique aid in the diagnostic relevance of TB images in identifying the objects present in them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优化的蚁群启发式结核病图像分割
结核病(TB)是一场全球性的健康危机,是仅次于人类免疫缺陷病毒的第二种导致死亡的原发性传染病。在这项工作中,已经尝试检测痰涂片中是否存在杆菌。对标准图像采集协议下记录的涂抹图像进行了基于形态学的混合蚁群优化分割。这种方法能够在TB图像中保留杆菌的形状。使用重叠、距离和基于概率的测量,利用地面实况对分割图像进行验证。从分割图像中提取出重要的基于形状的特征,如面积、周长、紧凑度、形状因子和曲折度。观察到,该方法保留了更多的边缘,检测到杆菌的存在,并通过减少冗余搜索次数来促进直接分割以生成边缘。因此,这种混合分割技术有助于TB图像在识别其中存在的对象时的诊断相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
期刊最新文献
A Passenger Flow Prediction Method Using SAE-GCN-BiLSTM for Urban Rail Transit A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution CT Image Detection of Pulmonary Tuberculosis Based on the Improved Strategy YOLOv5 A Review on Convergence Analysis of Particle Swarm Optimization Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1