Lightweight Cement-Based Composites Incorporating Hollow Glass Microspheres: Fresh and Hardened State Properties

IF 0.8 4区 工程技术 Q4 ENGINEERING, CIVIL Teknik Dergi Pub Date : 2020-08-17 DOI:10.18400/tekderg.677447
Nihat Kabay, Ahmet B. Kizilkanat, Busra Akturk, Yusuf Kahraman
{"title":"Lightweight Cement-Based Composites Incorporating Hollow Glass Microspheres: Fresh and Hardened State Properties","authors":"Nihat Kabay, Ahmet B. Kizilkanat, Busra Akturk, Yusuf Kahraman","doi":"10.18400/tekderg.677447","DOIUrl":null,"url":null,"abstract":"This research aims to develop a lightweight cementitious composite with satisfying mechanical and good thermal insulating properties. Two different types of hollow glass microspheres (HGM) were used as lightweight aggregates and were substituted with fine aggregate by 10, 20, and 40% by volume. The rheological, physical, mechanical, and microstructural properties of the resulting HGM-incorporated composites were investigated and correlations were established between physical and mechanical test results. The results showed that the physical and mechanical properties of individual HGM particles play a dominant role in the properties of lightweight mortars. HGM addition provided reductions up to 20% in the density and 45% in the thermal conductivity values of mortars compared to the reference. The best HGM ratio in the tested range was found as 20%, which provides benefits such as reduced density and enhanced thermal insulation capability without causing a significant reduction in compressive strength. It was concluded that HGMs can be used in the lightweight cementitious mortar production which has great potential in building applications to reduce the heating energy consumption.","PeriodicalId":49442,"journal":{"name":"Teknik Dergi","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknik Dergi","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18400/tekderg.677447","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

Abstract

This research aims to develop a lightweight cementitious composite with satisfying mechanical and good thermal insulating properties. Two different types of hollow glass microspheres (HGM) were used as lightweight aggregates and were substituted with fine aggregate by 10, 20, and 40% by volume. The rheological, physical, mechanical, and microstructural properties of the resulting HGM-incorporated composites were investigated and correlations were established between physical and mechanical test results. The results showed that the physical and mechanical properties of individual HGM particles play a dominant role in the properties of lightweight mortars. HGM addition provided reductions up to 20% in the density and 45% in the thermal conductivity values of mortars compared to the reference. The best HGM ratio in the tested range was found as 20%, which provides benefits such as reduced density and enhanced thermal insulation capability without causing a significant reduction in compressive strength. It was concluded that HGMs can be used in the lightweight cementitious mortar production which has great potential in building applications to reduce the heating energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含中空玻璃微球的轻质水泥基复合材料:新鲜和硬化状态特性
本研究旨在开发一种具有良好的力学性能和保温性能的轻质胶凝复合材料。采用两种不同类型的中空玻璃微球(HGM)作为轻骨料,用细骨料代替,其体积比分别为10%、20%和40%。研究了hgm复合材料的流变学、物理、力学和微观结构性能,并建立了物理和力学测试结果之间的相关性。结果表明,HGM颗粒的物理力学性能对轻质砂浆的性能起主导作用。与参考材料相比,HGM的加入使砂浆的密度降低了20%,导热系数降低了45%。在测试范围内,最佳的HGM比率为20%,它提供了诸如降低密度和增强保温能力等好处,而不会导致抗压强度的显著降低。研究结果表明,hgm可用于轻质水泥砂浆生产,在降低建筑采暖能耗方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Teknik Dergi
Teknik Dergi 工程技术-工程:土木
自引率
30.80%
发文量
65
审稿时长
>12 weeks
期刊介绍: The scope of Teknik Dergi is naturally confined with the subjects falling in the area of civil engineering. However, the area of civil engineering has recently been significantly enlarged, even the definition of civil engineering has somewhat changed. Half a century ago, engineering was simply defined as “the art of using and converting the natural resources for the benefit of the mankind”. Today, the same objective is expected to be realised (i) by complying with the desire and expectations of the people concerned and (ii) without wasting the resources and within the sustainability principles. This change has required an interaction between engineering and social and administrative sciences. Some subjects at the borderline between civil engineering and social and administrative sciences have consequently been included in the area of civil engineering. Teknik Dergi defines its scope in line with this understanding. However, it requires the papers falling in the borderline to have a significant component of civil engineering.
期刊最新文献
Scheduling, Management and Optimization of Construction Process A Downscaling Application for Local Meteorological Variables of Eastern Black Sea Basin and Scenario Based Predictions Developing a Performance-Based Payment Model in Urban Public Transport Systems Evaluation of Occupational Safety in the Operation and Maintenance Activities of Dams Determination of Finite Element Modelling Errors for Box Culverts Using Field Load Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1