M. Caggio, Piotr Kalita, G. Łukaszewicz, K. Mizerski
{"title":"Vertical heat transport at infinite Prandtl number for micropolar fluid","authors":"M. Caggio, Piotr Kalita, G. Łukaszewicz, K. Mizerski","doi":"10.24423/AOM.3598","DOIUrl":null,"url":null,"abstract":"We investigate the upper bound on the vertical heat transport in the fully 3D Rayleigh–Benard convection problem at the infinite Prandtl number for a micropolar fluid. We obtain a bound, given by the cube root of the Rayleigh number, with a logarithmic correction. The derived bound is compared with the optimal known one for the Newtonian fluid. It follows that the (optimal) upper bound for the micropolar fluid is less than the corresponding bound for the Newtonian fluid at the same Rayleigh number. Moreover, strong microrotational diffusion effects can entirely suppress the heat transfer. In the Newtonian limit our purely analytical findings fully agree with estimates and scaling laws obtained from previous theories significantly relying on phenomenology.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"72 1","pages":"525-553"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3598","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the upper bound on the vertical heat transport in the fully 3D Rayleigh–Benard convection problem at the infinite Prandtl number for a micropolar fluid. We obtain a bound, given by the cube root of the Rayleigh number, with a logarithmic correction. The derived bound is compared with the optimal known one for the Newtonian fluid. It follows that the (optimal) upper bound for the micropolar fluid is less than the corresponding bound for the Newtonian fluid at the same Rayleigh number. Moreover, strong microrotational diffusion effects can entirely suppress the heat transfer. In the Newtonian limit our purely analytical findings fully agree with estimates and scaling laws obtained from previous theories significantly relying on phenomenology.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.