Estimating full longwave and shortwave radiative transfer with neural networks of varying complexity

IF 1.9 4区 地球科学 Q2 ENGINEERING, OCEAN Journal of Atmospheric and Oceanic Technology Pub Date : 2023-08-31 DOI:10.1175/jtech-d-23-0012.1
Ryan Lagerquist, David D. Turner, I. Ebert‐Uphoff, J. Stewart
{"title":"Estimating full longwave and shortwave radiative transfer with neural networks of varying complexity","authors":"Ryan Lagerquist, David D. Turner, I. Ebert‐Uphoff, J. Stewart","doi":"10.1175/jtech-d-23-0012.1","DOIUrl":null,"url":null,"abstract":"\nRadiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative-transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated a highly simplified version of the shortwave RRTM only – excluding many predictor variables, driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the northern hemisphere. In this work we emulate the full shortwave and longwave RRTM – with all predictor variables, driven by GFSv16 forecasts on the native pressure-sigma grid, using data from around the globe. We experiment with NNs of widely varying complexity, including the U-net++ and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great detail – as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/-0.002 K day−1 for heating rate and 6.3/4.3/-0.1 W m−2 for net flux. Analogous numbers for the longwave NN are 0.22/0.12/-0.0006 K day−1 and 1.07/0.76/+0.01 W m−2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90) times faster than the RRTM. Both will soon be tested online in the GFSv16.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0012.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Radiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative-transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated a highly simplified version of the shortwave RRTM only – excluding many predictor variables, driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the northern hemisphere. In this work we emulate the full shortwave and longwave RRTM – with all predictor variables, driven by GFSv16 forecasts on the native pressure-sigma grid, using data from around the globe. We experiment with NNs of widely varying complexity, including the U-net++ and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great detail – as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/-0.002 K day−1 for heating rate and 6.3/4.3/-0.1 W m−2 for net flux. Analogous numbers for the longwave NN are 0.22/0.12/-0.0006 K day−1 and 1.07/0.76/+0.01 W m−2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90) times faster than the RRTM. Both will soon be tested online in the GFSv16.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不同复杂度的神经网络估计长波和短波全辐射传输
在数值天气/气候预报中,辐射传输是一个重要但计算代价昂贵的过程。我们开发了神经网络(NN)来模拟称为快速辐射传输模型(RRTM)的常见RT参数化,目标是为全球预报系统(GFS) v16创建更快的参数化。在之前的工作中,我们只模拟了一个高度简化的短波RRTM版本——排除了许多预测变量,由快速刷新预测驱动,插值到一致的高度网格,仅使用北半球的30个站点。在这项工作中,我们模拟了全短波和长波RRTM -所有预测变量,由GFSv16在本地压力-西格玛网格上的预测驱动,使用来自全球的数据。我们对复杂程度变化很大的神经网络进行了实验,包括u -net++和U-net3+架构以及深度监督训练,旨在确保网格预测结构的真实性和准确性。我们非常详细地评估了最优短波神经网络和最优长波神经网络——作为地理位置、云状况和其他天气类型的函数。两种神经网络都能产生非常可靠的加热速率和通量。短波神经网络的加热速率的总体RMSE/MAE/偏差为0.14/0.08/-0.002 K day - 1,净通量的RMSE/MAE/偏差为6.3/4.3/-0.1 W m - 2。长波神经网络的类似数字为0.22/0.12/-0.0006 K day - 1和1.07/0.76/+0.01 W m - 2。两种神经网络在几乎所有情况下都表现良好,短波(长波)神经网络比RRTM快7510(90)倍。两者都将很快在GFSv16上进行在线测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
9.10%
发文量
135
审稿时长
3 months
期刊介绍: The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.
期刊最新文献
Synergistic retrievals of ice in high clouds from elastic backscatter lidar, Ku-band radar and submillimeter wave radiometer observations A Versatile Calibration Method for Rotary-Wing UAS as Wind Measurement Systems A Case of Idiopathic Intracranial Hypertension/Pseudotumor Cerebri Syndrome Cured by Myomectomy. Optimum Estimation of Coastal Currents Using Moving Vehicles Evaluation and Intercomparison of Small Uncrewed Aircraft Systems Used for Atmospheric Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1