{"title":"Cubesat Antenna Analysis and Design: Are you using the right computational electromagnetic tool?","authors":"I. Latachi, T. Rachidi, M. Karim","doi":"10.7716/aem.v10i2.1517","DOIUrl":null,"url":null,"abstract":"Antenna systems play a critical role in establishing wireless communication links and sustaining remote sensing requirements for Cubesat applications. In addition to the usual antenna design requirements, Cubesat-based spacecrafts impose additional stringent constraints related to the on-board available space, power consumption and development costs. To develop optimal antenna prototypes while considering all these constraints and decrease trial and error related costs, computational electromagnetics (CEM) simulation tools are used. The accuracy of simulation results depends to a great extent on the choice of the appropriate CEM tool for the particular antenna problem to be analyzed; ergo, identifying and answering key questions about design objectives and requirements is necessary for informed decision-making throughout the selection and design processes. However, this could be quite challenging because of existing gaps both in the practitioners’ knowledge about different CEM tools capabilities, limitations, and design know-how. This is especially true for non-specialists such as students and academics involved in student driven Cubesat projects. Therefore, the rationale of this manuscript is to bridge those gaps and clarify some common misconception commonly encountered during the selection and design processes. In that regard, first, an overview of existing antenna configurations commonly used in Cubesat communications is provided. Next, antenna design general workflow is presented. Then, capabilities and limitations of different CEM solving methods are presented. After that, CEM software selection process trade-offs and possible sources of errors are discussed from a practical viewpoint. Finally, a case study of Masat-1 antenna system design is presented as practical example.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v10i2.1517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Antenna systems play a critical role in establishing wireless communication links and sustaining remote sensing requirements for Cubesat applications. In addition to the usual antenna design requirements, Cubesat-based spacecrafts impose additional stringent constraints related to the on-board available space, power consumption and development costs. To develop optimal antenna prototypes while considering all these constraints and decrease trial and error related costs, computational electromagnetics (CEM) simulation tools are used. The accuracy of simulation results depends to a great extent on the choice of the appropriate CEM tool for the particular antenna problem to be analyzed; ergo, identifying and answering key questions about design objectives and requirements is necessary for informed decision-making throughout the selection and design processes. However, this could be quite challenging because of existing gaps both in the practitioners’ knowledge about different CEM tools capabilities, limitations, and design know-how. This is especially true for non-specialists such as students and academics involved in student driven Cubesat projects. Therefore, the rationale of this manuscript is to bridge those gaps and clarify some common misconception commonly encountered during the selection and design processes. In that regard, first, an overview of existing antenna configurations commonly used in Cubesat communications is provided. Next, antenna design general workflow is presented. Then, capabilities and limitations of different CEM solving methods are presented. After that, CEM software selection process trade-offs and possible sources of errors are discussed from a practical viewpoint. Finally, a case study of Masat-1 antenna system design is presented as practical example.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.