Ezgi Bezirhan Arikan, Yasin Ozay, B. Unal, V. Vatanpour, N. Dizge
{"title":"Treatability of household waste plastic garbage bag recycling industry wastewater with membrane","authors":"Ezgi Bezirhan Arikan, Yasin Ozay, B. Unal, V. Vatanpour, N. Dizge","doi":"10.12989/MWT.2020.11.6.375","DOIUrl":null,"url":null,"abstract":"In this study, household waste plastic garbage bag recycling industry wastewater was treated by a membrane process to recycle water for using in the bags washing process. Two different ultrafiltration (UP150 and UP005) and nanofiltration (NF270 and NF90) membranes were tested. The steady-state permeate flux was obtained 14.9 and 19.2 L/m2.h at 5 bar for UP150 and UP005 membranes, respectively. However, the steady-state permeate flux was 12.9 and 8.9 L/m2.h at 20 bar for NF270 and NF90 membranes, respectively. The chemical oxygen demand (COD) was also tested for all membrane permeates and the highest COD removal efficiency was obtained for NF90 membrane. Thus, optimization was carried out using NF90 membrane and the effect of transmembrane pressure (10, 20, 30 bar) and solution pH (5, 7, 9) on COD removal efficiency was tested. The results showed that the highest steady-state permeate flux (23.5 L/m2.h) and COD removal efficiency (95.1%) were obtained at 30 bar and pH 9. After the optimization of the membrane type and operating conditions, 75% recovery was obtained to re-use in the bags washing process. The concentrate stream was treated by an activated sludge process to manage membrane concentrate and to provide discharge standards. The maximum COD removal efficiency in biological treatment for membrane concentrate stream was 96.2% under steady-state condition using a sequencing batch reactor (SBR) operated at 10 days of sludge retention time and 12 h of hydraulic retention time. The proposed combined process including membrane and activated sludge processes was successfully used to recover wastewater.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"11 1","pages":"375"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2020.11.6.375","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, household waste plastic garbage bag recycling industry wastewater was treated by a membrane process to recycle water for using in the bags washing process. Two different ultrafiltration (UP150 and UP005) and nanofiltration (NF270 and NF90) membranes were tested. The steady-state permeate flux was obtained 14.9 and 19.2 L/m2.h at 5 bar for UP150 and UP005 membranes, respectively. However, the steady-state permeate flux was 12.9 and 8.9 L/m2.h at 20 bar for NF270 and NF90 membranes, respectively. The chemical oxygen demand (COD) was also tested for all membrane permeates and the highest COD removal efficiency was obtained for NF90 membrane. Thus, optimization was carried out using NF90 membrane and the effect of transmembrane pressure (10, 20, 30 bar) and solution pH (5, 7, 9) on COD removal efficiency was tested. The results showed that the highest steady-state permeate flux (23.5 L/m2.h) and COD removal efficiency (95.1%) were obtained at 30 bar and pH 9. After the optimization of the membrane type and operating conditions, 75% recovery was obtained to re-use in the bags washing process. The concentrate stream was treated by an activated sludge process to manage membrane concentrate and to provide discharge standards. The maximum COD removal efficiency in biological treatment for membrane concentrate stream was 96.2% under steady-state condition using a sequencing batch reactor (SBR) operated at 10 days of sludge retention time and 12 h of hydraulic retention time. The proposed combined process including membrane and activated sludge processes was successfully used to recover wastewater.
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.