B. Upton, L. Kirstein, N. Odling, J. Underhill, R. Ellam, N. Cayzer, Ben Clarke
{"title":"Silicic volcanism in the Scottish Lower Carboniferous; lavas, intrusions and ignimbrites of the Garleton Hills Volcanic Formation, SE Scotland","authors":"B. Upton, L. Kirstein, N. Odling, J. Underhill, R. Ellam, N. Cayzer, Ben Clarke","doi":"10.1144/sjg2019-008","DOIUrl":null,"url":null,"abstract":"Extensional tectonics and incipient rifting on the north side of the Iapetus suture were associated with eruption of (mainly) mildly alkaline olivine basalts. Initially in the Tournaisian (Southern Uplands Terrane), magmatic activity migrated northwards producing the Garleton Hills Volcanic Formation (GHVF) across an anomalous sector of the Southern Uplands. The latter was followed by resumption of volcanism in the Midland Valley Terrane, yielding the Arthur's Seat Volcanic Formation. Later larger-scale activity generated the Clyde Plateau Volcanic Formation (CPVF) and the Kintyre lavas on the Grampian Highlands Terrane. Comparable volcanic successions occur in Limerick, Ireland. This short-lived (c. 30 myr) phase was unique in the magmatic history of the Phanerozoic of the British Isles in which mildly alkaline basaltic magmatism locally led to trachytic differentiates. The Bangly Member of the GHVF represents the largest area occupied by such silicic rocks. The most widespread lavas and intrusions are silica-saturated/oversaturated trachytes for which new whole-rock and isotopic data are presented. Previously unrecognized ignimbrites are described. Sparse data from the fiamme suggest that the magma responsible for the repetitive ignimbrite eruptions was a highly fluid rhyolite. The Bangly Member probably represents the remains of a central-type volcano, the details of which are enigmatic.","PeriodicalId":49556,"journal":{"name":"Scottish Journal of Geology","volume":"56 1","pages":"63 - 79"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/sjg2019-008","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scottish Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/sjg2019-008","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Extensional tectonics and incipient rifting on the north side of the Iapetus suture were associated with eruption of (mainly) mildly alkaline olivine basalts. Initially in the Tournaisian (Southern Uplands Terrane), magmatic activity migrated northwards producing the Garleton Hills Volcanic Formation (GHVF) across an anomalous sector of the Southern Uplands. The latter was followed by resumption of volcanism in the Midland Valley Terrane, yielding the Arthur's Seat Volcanic Formation. Later larger-scale activity generated the Clyde Plateau Volcanic Formation (CPVF) and the Kintyre lavas on the Grampian Highlands Terrane. Comparable volcanic successions occur in Limerick, Ireland. This short-lived (c. 30 myr) phase was unique in the magmatic history of the Phanerozoic of the British Isles in which mildly alkaline basaltic magmatism locally led to trachytic differentiates. The Bangly Member of the GHVF represents the largest area occupied by such silicic rocks. The most widespread lavas and intrusions are silica-saturated/oversaturated trachytes for which new whole-rock and isotopic data are presented. Previously unrecognized ignimbrites are described. Sparse data from the fiamme suggest that the magma responsible for the repetitive ignimbrite eruptions was a highly fluid rhyolite. The Bangly Member probably represents the remains of a central-type volcano, the details of which are enigmatic.
期刊介绍:
Although published only since 1965, the Scottish Journal of Geology has a long pedigree. It is the joint publication of the Geological Society of Glasgow and the Edinburgh Geological Society, which prior to 1965 published separate Transactions: from 1860 in the case of Glasgow and 1863 for Edinburgh.
Traditionally, the Journal has acted as the focus for papers on all aspects of Scottish geology and its contiguous areas, including the surrounding seas. The publication policy has always been outward looking, with the Editors encouraging review papers and papers on broader aspects of the Earth sciences that cannot be discussed solely in terms of Scottish geology.
The diverse geology of Scotland continues to provide an important natural laboratory for the study of earth sciences; many seminal studies in geology have been carried out on Scottish rocks, and over the years the results of much of this work had been published in the Journal and its predecessors.
The Journal fully deserves its high reputation worldwide and intends to maintain its status in the front rank of publications in the Earth sciences.