Synthesis of highly stable κ/ι-hybrid carrageenan micro- and nanogels via a sonication-assisted microemulsion route

Q2 Materials Science Polymers from Renewable Resources Pub Date : 2020-08-01 DOI:10.1177/2041247920960973
S. Rodriguez, F. Torres, Junior Arroyo, K. N. Gonzales, O. Troncoso, D. López
{"title":"Synthesis of highly stable κ/ι-hybrid carrageenan micro- and nanogels via a sonication-assisted microemulsion route","authors":"S. Rodriguez, F. Torres, Junior Arroyo, K. N. Gonzales, O. Troncoso, D. López","doi":"10.1177/2041247920960973","DOIUrl":null,"url":null,"abstract":"Novel carrageenan micro- and nanogels were developed via a sonication-assisted microemulsion processing route. The diameter of the dry samples ranged 197.3 −421.35 nm whereas the diameter of the samples suspended in water ranged 467.8–605.9 nm. Hybrid κ/ι-carrageenan, rather than κ- or ι-carrageenan was used for the first time for the preparation of micro- and nanogels. KCl was used as a cross-linking agent and Tween 80 was used as surfactant. The micro- and nanogels suspended in water were found to simultaneously exhibit a lower diameter, and a lower swelling ratio with higher Tween 80 content. The micro- and nanogel suspension yields a zeta potential value of −50.5 mV, superior to values reported elsewhere for pure κ- or ι-carrageenan micro- and nanogels. The high stability was attributed to the high hydrophile-lipophile balance (HLB = 15) value of Tween 80. These results suggest that hybrid κ/ι-carrageenan micro- and nanogels are promising candidates for smart therapeutics applications.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2041247920960973","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2041247920960973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 12

Abstract

Novel carrageenan micro- and nanogels were developed via a sonication-assisted microemulsion processing route. The diameter of the dry samples ranged 197.3 −421.35 nm whereas the diameter of the samples suspended in water ranged 467.8–605.9 nm. Hybrid κ/ι-carrageenan, rather than κ- or ι-carrageenan was used for the first time for the preparation of micro- and nanogels. KCl was used as a cross-linking agent and Tween 80 was used as surfactant. The micro- and nanogels suspended in water were found to simultaneously exhibit a lower diameter, and a lower swelling ratio with higher Tween 80 content. The micro- and nanogel suspension yields a zeta potential value of −50.5 mV, superior to values reported elsewhere for pure κ- or ι-carrageenan micro- and nanogels. The high stability was attributed to the high hydrophile-lipophile balance (HLB = 15) value of Tween 80. These results suggest that hybrid κ/ι-carrageenan micro- and nanogels are promising candidates for smart therapeutics applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声辅助微乳液法合成高稳定性κ/ι-杂化卡拉胶微纳凝胶
采用超声辅助微乳液工艺制备了新型卡拉胶微凝胶和纳米凝胶。干样品的直径范围为197.3−421.35 nm,而悬浮在水中的样品的直径为467.8–605.9 nm。首次使用κ/ι-卡拉胶杂化物,而不是κ-或ι-卡拉胶制备微凝胶和纳米凝胶。KCl用作交联剂,Tween 80用作表面活性剂。发现悬浮在水中的微凝胶和纳米凝胶在吐温80含量较高的情况下同时表现出较低的直径和较低的溶胀率。微凝胶和纳米凝胶悬浮液的ζ电位值为−50.5 mV,优于其他地方报道的纯κ-或ι-卡拉胶微凝胶和纳凝胶的电位值。高稳定性归因于吐温80的高亲水-亲脂平衡(HLB=15)值。这些结果表明,κ/ι-卡拉胶微凝胶和纳米凝胶是智能治疗应用的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
期刊最新文献
Polymers from renewable resources: Drug delivery platforms for transdermal delivery Lactic acid-facilitated surface modification of nanocellulose extracted from Borassus flabellifer leaves Recent advances in enhancing thermoelectric performance of polymeric materials Exploring the performance of bio-based PLA/PHB blends: A comprehensive analysis Production of nanocomposite films based on low density polyethylene/surface activated nanoperlite for modified atmosphere packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1