{"title":"Dynamic identification of short-term and longer-term hazardous locations using a conflict-based real-time extreme value safety model","authors":"Tarek Ghoul , Tarek Sayed , Chuanyun Fu","doi":"10.1016/j.amar.2022.100262","DOIUrl":null,"url":null,"abstract":"<div><p>A novel and effective approach to safety management requires evaluating the safety of locations over short time periods (e.g. minutes). Unlike traditional methods that are based on aggregate crash records over a few years, crash proneness in this approach reflects short-time durations and is related to dynamic traffic changes and dangerous driving events. This paper proposes a new approach to dynamically assess the crash proneness of traffic conditions within a very short time (e.g., signal cycle length) and to dynamically identify high-risk locations. Using a Bayesian hierarchal Extreme Value Theory (EVT) model, the short-term crash risk metrics, risk of crash (ROC), and return level (RL), are calculated using traffic conflict data. A short-term hazardous location identification and ranking framework is developed based on crash-risk threshold exceedances for every short-term analysis period. By further investigating the variation in short-term crash risk, longer-term hazardous location identification and ranking metrics such as the longer-term crash risk index (LTCRI) and the percent of time exceeding (PTE) were developed. Using these metrics, a framework is proposed by which hazardous intersections can be dynamically classified and ranked in both the short-term and the longer-term. This ranking may be dynamically updated as more data becomes available. The proposed framework was applied to a trajectory dataset consisting of 47 signalized intersections obtained from a UAV-based dataset. Conflicts were identified from vehicle trajectories and were used to compute the proposed short-term and longer-term metrics. The intersections within the network were then ranked based on the proposed framework. This study demonstrates the importance of investigating short-term fluctuations in crash risk that may otherwise be lost to averaging in longer-term analysis and proposes a simple and practical solution.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665722000513","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 5
Abstract
A novel and effective approach to safety management requires evaluating the safety of locations over short time periods (e.g. minutes). Unlike traditional methods that are based on aggregate crash records over a few years, crash proneness in this approach reflects short-time durations and is related to dynamic traffic changes and dangerous driving events. This paper proposes a new approach to dynamically assess the crash proneness of traffic conditions within a very short time (e.g., signal cycle length) and to dynamically identify high-risk locations. Using a Bayesian hierarchal Extreme Value Theory (EVT) model, the short-term crash risk metrics, risk of crash (ROC), and return level (RL), are calculated using traffic conflict data. A short-term hazardous location identification and ranking framework is developed based on crash-risk threshold exceedances for every short-term analysis period. By further investigating the variation in short-term crash risk, longer-term hazardous location identification and ranking metrics such as the longer-term crash risk index (LTCRI) and the percent of time exceeding (PTE) were developed. Using these metrics, a framework is proposed by which hazardous intersections can be dynamically classified and ranked in both the short-term and the longer-term. This ranking may be dynamically updated as more data becomes available. The proposed framework was applied to a trajectory dataset consisting of 47 signalized intersections obtained from a UAV-based dataset. Conflicts were identified from vehicle trajectories and were used to compute the proposed short-term and longer-term metrics. The intersections within the network were then ranked based on the proposed framework. This study demonstrates the importance of investigating short-term fluctuations in crash risk that may otherwise be lost to averaging in longer-term analysis and proposes a simple and practical solution.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.