{"title":"A Physical Phenomenon for the Fractional Nonlinear Mixed Integro-Differential Equation Using a Quadrature Nystrom Method","authors":"A. Jan, M. Abdou, M. Basseem","doi":"10.3390/fractalfract7090656","DOIUrl":null,"url":null,"abstract":"In this work, the existence and uniqueness solution of the fractional nonlinear mixed integro-differential equation (FrNMIoDE) is guaranteed with a general discontinuous kernel based on position and time-space L2Ω×C0,T, T<1. The FrNMIoDE conformed to the Volterra-Hammerstein integral equation (V-HIE) of the second kind, after applying the characteristics of a fractional integral, with a general discontinuous kernel in position for the Hammerstein integral term and a continuous kernel in time to the Volterra integral (VI) term. Then, using a separation technique methodology, we developed HIE, whose physical coefficients were time-variable. By examining the system’s convergence, the product Nystrom technique (PNT) and associated schemes were employed to create a nonlinear algebraic system (NAS).","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090656","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the existence and uniqueness solution of the fractional nonlinear mixed integro-differential equation (FrNMIoDE) is guaranteed with a general discontinuous kernel based on position and time-space L2Ω×C0,T, T<1. The FrNMIoDE conformed to the Volterra-Hammerstein integral equation (V-HIE) of the second kind, after applying the characteristics of a fractional integral, with a general discontinuous kernel in position for the Hammerstein integral term and a continuous kernel in time to the Volterra integral (VI) term. Then, using a separation technique methodology, we developed HIE, whose physical coefficients were time-variable. By examining the system’s convergence, the product Nystrom technique (PNT) and associated schemes were employed to create a nonlinear algebraic system (NAS).
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.