S M Rayhanul Islam , S M Yiasir Arafat , Hanfeng Wang
{"title":"Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation","authors":"S M Rayhanul Islam , S M Yiasir Arafat , Hanfeng Wang","doi":"10.1016/j.joes.2022.01.012","DOIUrl":null,"url":null,"abstract":"<div><p>The simplified modified Camassa-Holm (SMCH) equation is an important nonlinear model equation for identifying various wave phenomena in ocean engineering and science. The new auxiliary equation (NAE) method has been applied to the SMCH equation. Base on the method, we have obtained some novel analytical solutions such as hyperbolic, trigonometric, exponential, and rational function solutions of the SMCH equation. For appropriate values of parameters, three dimensional (3D) and two dimensional (2D) graphs are designed by Mathematica. The stability of the model is also discussed in this manuscript. The dynamic and physical behaviors of the solutions derived from the SMCH equation have been extensively discussed by these plots. All our solutions are indispensable for understanding the nonlinear phenomena of dispersive waves that are important in ocean engineering and science. In addition, our results are essential to clarify the various oceanographic applications containing ocean gravity waves, offshore rig in water, energy associated with a moving ocean wave and numerous other related phenomena. Finally, the obtained solutions are helpful for studying wave interactions in many new structures and high-dimensional models.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 3","pages":"Pages 238-245"},"PeriodicalIF":13.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322000249","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 11
Abstract
The simplified modified Camassa-Holm (SMCH) equation is an important nonlinear model equation for identifying various wave phenomena in ocean engineering and science. The new auxiliary equation (NAE) method has been applied to the SMCH equation. Base on the method, we have obtained some novel analytical solutions such as hyperbolic, trigonometric, exponential, and rational function solutions of the SMCH equation. For appropriate values of parameters, three dimensional (3D) and two dimensional (2D) graphs are designed by Mathematica. The stability of the model is also discussed in this manuscript. The dynamic and physical behaviors of the solutions derived from the SMCH equation have been extensively discussed by these plots. All our solutions are indispensable for understanding the nonlinear phenomena of dispersive waves that are important in ocean engineering and science. In addition, our results are essential to clarify the various oceanographic applications containing ocean gravity waves, offshore rig in water, energy associated with a moving ocean wave and numerous other related phenomena. Finally, the obtained solutions are helpful for studying wave interactions in many new structures and high-dimensional models.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.