Mieyi Wen, B. Ou, Ping Zhu, B.-J. Niu, Yan Gou, Lijuan Chen
{"title":"Preparation of self-healing polythiourethane/epoxy anticorrosive coatings based on dynamic disulfide bonds","authors":"Mieyi Wen, B. Ou, Ping Zhu, B.-J. Niu, Yan Gou, Lijuan Chen","doi":"10.1680/jsuin.22.01065","DOIUrl":null,"url":null,"abstract":"Defects and mechanical damage that leading to peeling, corrosion, and other potential hazards during practical applications were inevitable in epoxy coatings due to the high cross-link density of the epoxy network. Herein, we synthesized a self-healing polythiourethane material (SPTU) containing with dynamic disulfide bonds for the design and preparation of a self-healing SPTU/epoxy coating. FT-IR, 1H NMR and SEM showed that 2-hydroxyethyl disulfide was successfully introduced into the polythiourethane system. Due to the fracture and reattach of double sulfur bond, 3% SPTU-Epoxy coating exhibited good self-healing properties in scratch-treated, the scratch being repaired completely after 2 h at 85°C. Meanwhile, the tensile properties of the completely fractured 3% SPTU-Epoxy sample retained 75.7% after self-healing. The Tafel polarization crurve and electrochemical impedance spectroscopy (EIS) results demonstrate the 3% SPTU-Epoxy coating showed excellent corrosion resistance and still provides considerable corrosion resistance after 19 days of immersion corrosion tests. The self-healing coating exhibited good self-healing ability under heating conditions attributed to the bond breaking and reconnection of dynamic bonds provided by the self-healing component. The self-healing property and corrosion resistance of the prepared coating effectively improve the service life of the epoxy coating and provide some guidance for corrosion protection of epoxy coating.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01065","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Defects and mechanical damage that leading to peeling, corrosion, and other potential hazards during practical applications were inevitable in epoxy coatings due to the high cross-link density of the epoxy network. Herein, we synthesized a self-healing polythiourethane material (SPTU) containing with dynamic disulfide bonds for the design and preparation of a self-healing SPTU/epoxy coating. FT-IR, 1H NMR and SEM showed that 2-hydroxyethyl disulfide was successfully introduced into the polythiourethane system. Due to the fracture and reattach of double sulfur bond, 3% SPTU-Epoxy coating exhibited good self-healing properties in scratch-treated, the scratch being repaired completely after 2 h at 85°C. Meanwhile, the tensile properties of the completely fractured 3% SPTU-Epoxy sample retained 75.7% after self-healing. The Tafel polarization crurve and electrochemical impedance spectroscopy (EIS) results demonstrate the 3% SPTU-Epoxy coating showed excellent corrosion resistance and still provides considerable corrosion resistance after 19 days of immersion corrosion tests. The self-healing coating exhibited good self-healing ability under heating conditions attributed to the bond breaking and reconnection of dynamic bonds provided by the self-healing component. The self-healing property and corrosion resistance of the prepared coating effectively improve the service life of the epoxy coating and provide some guidance for corrosion protection of epoxy coating.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.