Salvador Canas-Moreno, Enrique Piñero-Fuentes, Antonio Rios-Navarro, Daniel Cascado-Caballero, Fernando Perez-Peña, Alejandro Linares-Barranco
{"title":"Towards neuromorphic FPGA-based infrastructures for a robotic arm","authors":"Salvador Canas-Moreno, Enrique Piñero-Fuentes, Antonio Rios-Navarro, Daniel Cascado-Caballero, Fernando Perez-Peña, Alejandro Linares-Barranco","doi":"10.1007/s10514-023-10111-x","DOIUrl":null,"url":null,"abstract":"<div><p>Muscles are stretched with bursts of spikes that come from motor neurons connected to the cerebellum through the spinal cord. Then, alpha motor neurons directly innervate the muscles to complete the motor command coming from upper biological structures. Nevertheless, classical robotic systems usually require complex computational capabilities and relative high-power consumption to process their control algorithm, which requires information from the robot’s proprioceptive sensors. The way in which the information is encoded and transmitted is an important difference between biological systems and robotic machines. Neuromorphic engineering mimics these behaviors found in biology into engineering solutions to produce more efficient systems and for a better understanding of neural systems. This paper presents the application of a Spike-based Proportional-Integral-Derivative controller to a 6-DoF Scorbot ER-VII robotic arm, feeding the motors with Pulse-Frequency-Modulation instead of Pulse-Width-Modulation, mimicking the way in which motor neurons act over muscles. The presented frameworks allow the robot to be commanded and monitored locally or remotely from both a Python software running on a computer or from a spike-based neuromorphic hardware. Multi-FPGA and single-PSoC solutions are compared. These frameworks are intended for experimental use of the neuromorphic community as a testbed platform and for dataset recording for machine learning purposes.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 7","pages":"947 - 961"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10111-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10111-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Muscles are stretched with bursts of spikes that come from motor neurons connected to the cerebellum through the spinal cord. Then, alpha motor neurons directly innervate the muscles to complete the motor command coming from upper biological structures. Nevertheless, classical robotic systems usually require complex computational capabilities and relative high-power consumption to process their control algorithm, which requires information from the robot’s proprioceptive sensors. The way in which the information is encoded and transmitted is an important difference between biological systems and robotic machines. Neuromorphic engineering mimics these behaviors found in biology into engineering solutions to produce more efficient systems and for a better understanding of neural systems. This paper presents the application of a Spike-based Proportional-Integral-Derivative controller to a 6-DoF Scorbot ER-VII robotic arm, feeding the motors with Pulse-Frequency-Modulation instead of Pulse-Width-Modulation, mimicking the way in which motor neurons act over muscles. The presented frameworks allow the robot to be commanded and monitored locally or remotely from both a Python software running on a computer or from a spike-based neuromorphic hardware. Multi-FPGA and single-PSoC solutions are compared. These frameworks are intended for experimental use of the neuromorphic community as a testbed platform and for dataset recording for machine learning purposes.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.