T. Mutiara, M. Fahrurrozi, H. Sulistyo, M. Hidayat
{"title":"Green synthesis methods and characterization of bacterial cellulose/silver nanoparticle composites","authors":"T. Mutiara, M. Fahrurrozi, H. Sulistyo, M. Hidayat","doi":"10.1515/gps-2023-0067","DOIUrl":null,"url":null,"abstract":"Abstract Bacterial cellulose (BC) is a microbiologically produced cellulose with high purity and excellent biocompatibility, allowing it to be used alone or in combination with other materials, including polymers and nanoparticles. This study was conducted to incorporate silver nanoparticles (AgNPs) into a BC matrix using simple and environmentally friendly methods in order to create a composite with superior industrial properties. The fabricated composites were characterized with Fourier transform infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX), while the thermal stability was investigated by thermogravimetric analysis. The antimicrobial activity of the composites was determined by observing the formation of an inhibition zone during the incubation of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). The SEM, EDX, and XRD analysis confirmed the presence of AgNPs. The composites also exhibit excellent thermal stability and significant antimicrobial activity against S. aureus and E. coli.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2023-0067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Bacterial cellulose (BC) is a microbiologically produced cellulose with high purity and excellent biocompatibility, allowing it to be used alone or in combination with other materials, including polymers and nanoparticles. This study was conducted to incorporate silver nanoparticles (AgNPs) into a BC matrix using simple and environmentally friendly methods in order to create a composite with superior industrial properties. The fabricated composites were characterized with Fourier transform infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX), while the thermal stability was investigated by thermogravimetric analysis. The antimicrobial activity of the composites was determined by observing the formation of an inhibition zone during the incubation of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). The SEM, EDX, and XRD analysis confirmed the presence of AgNPs. The composites also exhibit excellent thermal stability and significant antimicrobial activity against S. aureus and E. coli.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.