Effect of Volute Collector on the Performance of Centrifugal Pump Based on Entropy Generation Analysis

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2022-09-23 DOI:10.46604/ijeti.2022.9741
Maitrik Shah, Beena Baloni, Salim Channiwala
{"title":"Effect of Volute Collector on the Performance of Centrifugal Pump Based on Entropy Generation Analysis","authors":"Maitrik Shah, Beena Baloni, Salim Channiwala","doi":"10.46604/ijeti.2022.9741","DOIUrl":null,"url":null,"abstract":"A proper design of centrifugal pumps reduces power loss and improves efficiency. This study aims to investigate and analyze the effect of different volute collector configurations on centrifugal pump performance. Locations of losses are detected using the entropy production rate, whereas the number of losses is evaluated using user-defined codes. Three volute collectors are selected based on their connections with standard pipes. A steady flow numerical analysis is performed to determine the performance parameters of the centrifugal pump and select a modified volute collector design. Comparing the results of experiments on the base and modified volute collectors confirmed that the proper design of the volute collector can help reduce the secondary flow losses at subsequent locations, which reduces the entropy production and losses. As compared to the base pump, the modified volute collector improved the pump efficiency by 3% at the duty flow.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2022.9741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

A proper design of centrifugal pumps reduces power loss and improves efficiency. This study aims to investigate and analyze the effect of different volute collector configurations on centrifugal pump performance. Locations of losses are detected using the entropy production rate, whereas the number of losses is evaluated using user-defined codes. Three volute collectors are selected based on their connections with standard pipes. A steady flow numerical analysis is performed to determine the performance parameters of the centrifugal pump and select a modified volute collector design. Comparing the results of experiments on the base and modified volute collectors confirmed that the proper design of the volute collector can help reduce the secondary flow losses at subsequent locations, which reduces the entropy production and losses. As compared to the base pump, the modified volute collector improved the pump efficiency by 3% at the duty flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于熵产分析的蜗壳集热器对离心泵性能的影响
合理设计离心泵可以减少功率损失,提高效率。本研究旨在探讨和分析不同蜗壳集热器配置对离心泵性能的影响。使用熵产生率检测损失的位置,而使用用户定义代码评估损失的数量。根据与标准管道的连接选择三个蜗壳集热器。通过定常流数值分析,确定了离心泵的性能参数,选择了改进的蜗壳集热器设计方案。通过对基础型和改进型蜗壳集热器的实验对比,验证了蜗壳集热器的合理设计有助于减少后续位置的二次流损失,从而降低了熵产和损失。与基础泵相比,改进的蜗壳集热器在占空流量下将泵效率提高了3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
Domain Adaptation for Roasted Coffee Bean Quality Inspection Design of Deep Learning Acoustic Sonar Receiver with Temporal/ Spatial Underwater Channel Feature Extraction Capability Grid Operation and Inspection Resource Scheduling Based on an Adaptive Genetic Algorithm Closed-House Biofilter Design and Performance Evaluation for Mitigating Environmental Odor Disturbances Analysis of Drain-Induced Barrier Lowering for Gate-All-Around FET with Ferroelectric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1