An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2023-01-05 DOI:10.3390/mca28010006
Octavio Ramos-Figueroa, Marcela Quiroz-Castellanos, E. Mezura-Montes, Nicadro Cruz-Ramírez
{"title":"An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem","authors":"Octavio Ramos-Figueroa, Marcela Quiroz-Castellanos, E. Mezura-Montes, Nicadro Cruz-Ramírez","doi":"10.3390/mca28010006","DOIUrl":null,"url":null,"abstract":"The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不相关并行机调度问题分组变异算子的实验研究
分组遗传算法(GGA)是标准遗传算法的扩展,该算法使用基于组的表示方案和在组级别工作的变异算子。这种元启发式是最常用于解决组合优化分组问题的方法之一。它的优化过程由不同的组件组成,尽管交叉和变异算子是最经常出现的。本文旨在强调设计良好的操作员对GGA的最终性能可能产生的影响。我们对GGA的不同变异算子进行了比较实验研究,该GGA旨在解决具有不相关机器的并行机器调度问题和完工时间最小化问题,包括在一组机器中调度一组作业。所提出的方法侧重于识别突变操作中涉及的策略,并使其适应所研究问题的特点。作为这项实验研究的结果,获得了问题域的知识,并用于设计一种新的突变算子,称为2-项重新插入。实验结果表明,通过用新的突变算子代替原来的突变算子,最先进的GGA性能得到了显著提高,取得了更好的结果,改进率为52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1