{"title":"Improved Barnacle Mating Optimizer-Based Least Square Support Vector Machine to Predict COVID-19 Confirmed Cases with Total Vaccination","authors":"Marzia Ahmed, M. Sulaiman, A. Mohamad","doi":"10.2478/cait-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract Every country must have an accurate and efficient forecasting model to avoid and manage the epidemic. This paper suggests an upgrade to one of the evolutionary algorithms inspired by nature, the Barnacle Mating Optimizer (BMO). First, the exploration phase of the original BMO is enhanced by enforcing and replacing the sperm cast equation through Levy flight. Then, the Least Square Support Vector Machine (LSSVM) is partnered with the improved BMO (IBMO). This hybrid approach, IBMO-LSSVM, has been deployed effectively for time-series forecasting to enhance the RBF kernel-based LSSVM model since vaccination started against COVID-19 in Malaysia. In comparison to other well-known algorithms, our outcomes are superior. In addition, the IBMO is assessed on 19 conventional benchmarks and the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CECC06, 2019 Competition). In most cases, IBMO outputs are better than comparison algorithms. However, in other circumstances, the outcomes are comparable.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Every country must have an accurate and efficient forecasting model to avoid and manage the epidemic. This paper suggests an upgrade to one of the evolutionary algorithms inspired by nature, the Barnacle Mating Optimizer (BMO). First, the exploration phase of the original BMO is enhanced by enforcing and replacing the sperm cast equation through Levy flight. Then, the Least Square Support Vector Machine (LSSVM) is partnered with the improved BMO (IBMO). This hybrid approach, IBMO-LSSVM, has been deployed effectively for time-series forecasting to enhance the RBF kernel-based LSSVM model since vaccination started against COVID-19 in Malaysia. In comparison to other well-known algorithms, our outcomes are superior. In addition, the IBMO is assessed on 19 conventional benchmarks and the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CECC06, 2019 Competition). In most cases, IBMO outputs are better than comparison algorithms. However, in other circumstances, the outcomes are comparable.