Discrimination and Classification model from Multivariate Exponential Power Distribution

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2020-10-14 DOI:10.1285/I20705948V13N2P284
A. Olosunde, A. T. Soyinkab
{"title":"Discrimination and Classification model from Multivariate Exponential Power Distribution","authors":"A. Olosunde, A. T. Soyinkab","doi":"10.1285/I20705948V13N2P284","DOIUrl":null,"url":null,"abstract":"It is common to assume a normal distribution when discriminating and classifying a multivariate data based on some attributes. But when such data is lighter or heavier in both tails than the normal distribution, then the  probability of misclassification becomes higher giving unreliable result. This study proposed multivariate exponential power distribution a family of elliptically contoured model as underlining model for discrimination and classification. The distribution has a shape parameter which regulate the tail of the symmetric distribution to mitigate the problem of both lighter and heavier tails data, this generalizes the normal distribution and thus will definitely gives a lower misclassification error in discrimination and classification. The resulting discriminant model was compared with fisher linear discriminant function when applying to real data.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"284-292"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N2P284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

It is common to assume a normal distribution when discriminating and classifying a multivariate data based on some attributes. But when such data is lighter or heavier in both tails than the normal distribution, then the  probability of misclassification becomes higher giving unreliable result. This study proposed multivariate exponential power distribution a family of elliptically contoured model as underlining model for discrimination and classification. The distribution has a shape parameter which regulate the tail of the symmetric distribution to mitigate the problem of both lighter and heavier tails data, this generalizes the normal distribution and thus will definitely gives a lower misclassification error in discrimination and classification. The resulting discriminant model was compared with fisher linear discriminant function when applying to real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元指数幂分布的判别与分类模型
当基于某些属性对多变量数据进行判别和分类时,通常假设正态分布。但当这样的数据在两个尾部都比正态分布轻或重时,错误分类的概率就会变得更高,从而给出不可靠的结果。本研究提出多元指数幂分布一类椭圆轮廓模型作为判别和分类的强调模型。该分布具有一个形状参数,该形状参数调节对称分布的尾部,以减轻较轻和较重尾部数据的问题,这推广了正态分布,因此在判别和分类中肯定会给出较低的误分类误差。将所得到的判别模型与fisher线性判别函数应用于实际数据时进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1