A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression

IF 1 Q3 STATISTICS & PROBABILITY Journal of Probability and Statistics Pub Date : 2018-12-30 DOI:10.1155/2018/2834183
Prithish Banerjee, Broti Garai, Himel Mallick, PhD, FASA, S. Chowdhury, Saptarshi Chatterjee
{"title":"A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression","authors":"Prithish Banerjee, Broti Garai, Himel Mallick, PhD, FASA, S. Chowdhury, Saptarshi Chatterjee","doi":"10.1155/2018/2834183","DOIUrl":null,"url":null,"abstract":"We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2834183","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2834183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于零膨胀Poisson回归的自适应LASSO的一个注记
我们考虑使用零膨胀泊松(ZIP)回归对具有多余零的计数数据进行建模的问题。最近,已经开发了各种正则化方法用于ZIP模型中的变量选择。其中,EM LASSO是一种流行的同时进行变量选择和参数估计的方法。然而,EM LASSO存在估计效率低和选择不一致的问题。为了解决这些问题,我们提出了一组使用各种数据自适应权重的EM自适应LASSO方法。我们从理论上证明了新方法能够一致地识别真实模型,并且由此产生的估计量可以像oracle一样高效。通过广泛的合成实验对这些方法进行了进一步评估,并将其应用于德国医疗保健需求数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
期刊最新文献
Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails Exponentially Generated Modified Chen Distribution with Applications to Lifetime Dataset Bayesian Estimation of the Stress-Strength Reliability Based on Generalized Order Statistics for Pareto Distribution Monitoring Changes in Clustering Solutions: A Review of Models and Applications Fitting Time Series Models to Fisheries Data to Ascertain Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1